In this study we investigated the influence of polypropylene/organoclay fibers on durability and mechanical behaviour of concrete. Pure polypropylene fibers and polypropylene nanocomposite fibers of two different lengths (20 and 60 mm) have been mixed in concrete at two volume fractions (0.1% and 0.3%). Nanoclay addition increases fibers elastic modulus (about 27%) reducing ductility. Workability of concrete is greatly influenced by fibers length and volume fraction: increasing these two values workability decreases. Fibers are not influent on compressive and flexural strength while post-cracking toughness is increased. Nanocomposite fibers have a better pull-out strength due to a better friction during slipping, but this doesn’t ensure a better adhesion. Water absorption, freeze/thaw cycles and sulfate attack test demonstrate that increasing fibers volume fraction, durability of concrete increases.

DURABILITY AND MECHANICAL PROPERTIES OF NANOCOPOSITE FIBER REINFORCED CONCRETE / Coppola, Bartolomeo; Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano. - In: CSE JOURNAL. - ISSN 2283-8767. - ELETTRONICO. - 2:(2014), pp. 127-136. [10.12896/cse20140020031]

DURABILITY AND MECHANICAL PROPERTIES OF NANOCOPOSITE FIBER REINFORCED CONCRETE

Coppola Bartolomeo;
2014

Abstract

In this study we investigated the influence of polypropylene/organoclay fibers on durability and mechanical behaviour of concrete. Pure polypropylene fibers and polypropylene nanocomposite fibers of two different lengths (20 and 60 mm) have been mixed in concrete at two volume fractions (0.1% and 0.3%). Nanoclay addition increases fibers elastic modulus (about 27%) reducing ductility. Workability of concrete is greatly influenced by fibers length and volume fraction: increasing these two values workability decreases. Fibers are not influent on compressive and flexural strength while post-cracking toughness is increased. Nanocomposite fibers have a better pull-out strength due to a better friction during slipping, but this doesn’t ensure a better adhesion. Water absorption, freeze/thaw cycles and sulfate attack test demonstrate that increasing fibers volume fraction, durability of concrete increases.
2014
File in questo prodotto:
File Dimensione Formato  
31-112-1-PB.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2835745