The goal of this work is to determine the representation type of any smooth rational ACM surface in 4 by constructing large families of simple Ulrich bundles of arbitrary rank. It turns out that, excluding the cubic scroll, all of them are of wild representation type. In addition, we show that a general linear standard determinantal variety of codimension one or two supports indecomposable Ulrich sheaves of rank 1 and 2. © 2012 Springer Science+Business Media B.V.
Representation type of rational ACM surfaces X ⊆ P4 / R. M., Miro-Roig; Pons Llopis, Juan Francisco. - In: ALGEBRAS AND REPRESENTATION THEORY. - ISSN 1386-923X. - 16:4(2013), pp. 1135-1157.
Titolo: | Representation type of rational ACM surfaces X ⊆ P4 |
Autori: | |
Data di pubblicazione: | 2013 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10468-012-9349-z |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Miró-Roig-Pons-Llopis2013_Article_RepresentationTypeOfRationalAC.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2831739