A natural number is a binary k’ th power if its binary representation consists of k consecutive identical blocks. We prove, using tools from combinatorics, linear algebra, and number theory, an analogue of Waring’s theorem for sums of binary k’th powers. More precisely, we show that for each integer k> 2, there exists an effectively computable natural number n such that every sufficiently large multiple of Ek:=gcd(2k - 1,k) is the sum of at most n binary k’th powers. (The hypothesis of being a multiple of Ek cannot be omitted, since we show that the gcd of the binary k’th powers is Ek.) Furthermore, we show that n = 2O(k3). Analogous results hold for arbitrary integer bases b>2.

Waring’s theorem for binary powers / Kane Daniel, M.; Sanna, Carlo; Shallit, Jeffrey. - In: COMBINATORICA. - ISSN 0209-9683. - STAMPA. - 39:6(2019), pp. 1335-1350. [10.1007/s00493-019-3933-3]

Waring’s theorem for binary powers

Sanna Carlo;
2019

Abstract

A natural number is a binary k’ th power if its binary representation consists of k consecutive identical blocks. We prove, using tools from combinatorics, linear algebra, and number theory, an analogue of Waring’s theorem for sums of binary k’th powers. More precisely, we show that for each integer k> 2, there exists an effectively computable natural number n such that every sufficiently large multiple of Ek:=gcd(2k - 1,k) is the sum of at most n binary k’th powers. (The hypothesis of being a multiple of Ek cannot be omitted, since we show that the gcd of the binary k’th powers is Ek.) Furthermore, we show that n = 2O(k3). Analogous results hold for arbitrary integer bases b>2.
2019
File in questo prodotto:
File Dimensione Formato  
waring-revision.pdf

Open Access dal 30/10/2020

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 281.36 kB
Formato Adobe PDF
281.36 kB Adobe PDF Visualizza/Apri
Kane2019_Article_WaringSTheoremForBinaryPowers.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 438.93 kB
Formato Adobe PDF
438.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2819915