A natural number is a binary k’ th power if its binary representation consists of k consecutive identical blocks. We prove, using tools from combinatorics, linear algebra, and number theory, an analogue of Waring’s theorem for sums of binary k’th powers. More precisely, we show that for each integer k> 2, there exists an effectively computable natural number n such that every sufficiently large multiple of Ek:=gcd(2k - 1,k) is the sum of at most n binary k’th powers. (The hypothesis of being a multiple of Ek cannot be omitted, since we show that the gcd of the binary k’th powers is Ek.) Furthermore, we show that n = 2O(k3). Analogous results hold for arbitrary integer bases b>2.
Waring’s theorem for binary powers / Kane Daniel, M.; Sanna, Carlo; Shallit, Jeffrey. - In: COMBINATORICA. - ISSN 0209-9683. - STAMPA. - 39:6(2019), pp. 1335-1350. [10.1007/s00493-019-3933-3]
Titolo: | Waring’s theorem for binary powers | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00493-019-3933-3 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
waring-revision.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Kane2019_Article_WaringSTheoremForBinaryPowers.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2819915