Binarization is an attractive strategy for implementing lightweight Deep Convolutional Neural Networks (CNNs). Despite the unquestionable savings offered, memory footprint above all, it may induce an excessive accuracy loss that prevents a widespread use. This work elaborates on this aspect introducing TentacleNet, a new template designed to improve the predictive performance of binarized CNNs via parallelization. Inspired by the ensemble learning theory, it consists of a compact topology that is end-to-end trainable and organized to minimize memory utilization. Experimental results collected over three realistic benchmarks show TentacleNet fills the gap left by classical binary models, ensuring substantial memory savings w.r.t. state-of-theart binary ensemble methods.

TentacleNet: A Pseudo-Ensemble Template for Accurate Binary Convolutional Neural Networks / Mocerino, Luca; Calimera, Andrea. - ELETTRONICO. - (2020), pp. 261-265. (Intervento presentato al convegno IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)) [10.1109/AICAS48895.2020.9073982].

TentacleNet: A Pseudo-Ensemble Template for Accurate Binary Convolutional Neural Networks

Mocerino, Luca;Calimera, Andrea
2020

Abstract

Binarization is an attractive strategy for implementing lightweight Deep Convolutional Neural Networks (CNNs). Despite the unquestionable savings offered, memory footprint above all, it may induce an excessive accuracy loss that prevents a widespread use. This work elaborates on this aspect introducing TentacleNet, a new template designed to improve the predictive performance of binarized CNNs via parallelization. Inspired by the ensemble learning theory, it consists of a compact topology that is end-to-end trainable and organized to minimize memory utilization. Experimental results collected over three realistic benchmarks show TentacleNet fills the gap left by classical binary models, ensuring substantial memory savings w.r.t. state-of-theart binary ensemble methods.
2020
978-1-7281-4922-6
File in questo prodotto:
File Dimensione Formato  
09073982.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 145.52 kB
Formato Adobe PDF
145.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
aicas20.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 367.44 kB
Formato Adobe PDF
367.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2819465