Rolling element bearings are one of the most important component in every rotating machinery. As a result, their diagnosis before occurrence of any catastrophic failure is of vital importance and vibration based diagnosis is very popular approach. In this paper, the performance of a recently proposed method, Autogram, will be investigated on different data sets provided by Politecnico di Torino and University of Cincinnati. The results will be compared with other well-established methods such as Fast Kurtogram and Spectral Correlation.
Analysis of autogram performance for rolling element bearing diagnosis by using different data sets / Moshrefzadeh, A.; Fasana, A.; Garibaldi, L.. - STAMPA. - 15:(2019), pp. 132-141. (Intervento presentato al convegno International Conference on Condition Monitoring of Machinery in Non-Stationary Operation tenutosi a Santander (Spagna) nel 20-22 June) [10.1007/978-3-030-11220-2_14].
Analysis of autogram performance for rolling element bearing diagnosis by using different data sets
Moshrefzadeh A.;Fasana A.;Garibaldi L.
2019
Abstract
Rolling element bearings are one of the most important component in every rotating machinery. As a result, their diagnosis before occurrence of any catastrophic failure is of vital importance and vibration based diagnosis is very popular approach. In this paper, the performance of a recently proposed method, Autogram, will be investigated on different data sets provided by Politecnico di Torino and University of Cincinnati. The results will be compared with other well-established methods such as Fast Kurtogram and Spectral Correlation.| File | Dimensione | Formato | |
|---|---|---|---|
| CMMNO2018.pdf accesso riservato 
											Descrizione: Versione editoriale Springer
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										2.31 MB
									 
										Formato
										Adobe PDF
									 | 2.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| CMMNO 2018 _ Final.pdf Open Access dal 09/02/2020 
											Descrizione: Versione finale non editoriale
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										1.92 MB
									 
										Formato
										Adobe PDF
									 | 1.92 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2817787
			
		
	
	
	
			      	