Rolling element bearings are one of the most important component in every rotating machinery. As a result, their diagnosis before occurrence of any catastrophic failure is of vital importance and vibration based diagnosis is very popular approach. In this paper, the performance of a recently proposed method, Autogram, will be investigated on different data sets provided by Politecnico di Torino and University of Cincinnati. The results will be compared with other well-established methods such as Fast Kurtogram and Spectral Correlation.

Analysis of autogram performance for rolling element bearing diagnosis by using different data sets / Moshrefzadeh, A.; Fasana, A.; Garibaldi, L.. - STAMPA. - 15:(2019), pp. 132-141. (Intervento presentato al convegno International Conference on Condition Monitoring of Machinery in Non-Stationary Operation tenutosi a Santander (Spagna) nel 20-22 June) [10.1007/978-3-030-11220-2_14].

Analysis of autogram performance for rolling element bearing diagnosis by using different data sets

Moshrefzadeh A.;Fasana A.;Garibaldi L.
2019

Abstract

Rolling element bearings are one of the most important component in every rotating machinery. As a result, their diagnosis before occurrence of any catastrophic failure is of vital importance and vibration based diagnosis is very popular approach. In this paper, the performance of a recently proposed method, Autogram, will be investigated on different data sets provided by Politecnico di Torino and University of Cincinnati. The results will be compared with other well-established methods such as Fast Kurtogram and Spectral Correlation.
2019
978-3-030-11219-6
978-3-030-11220-2
File in questo prodotto:
File Dimensione Formato  
CMMNO2018.pdf

accesso riservato

Descrizione: Versione editoriale Springer
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
CMMNO 2018 _ Final.pdf

Open Access dal 09/02/2020

Descrizione: Versione finale non editoriale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2817787