We introduce a Radial Basis Function (RBF) parameterized macromodeling algorithm, specifically designed for high-dimensional parameters. As opposed to standard approaches, the adopted RBF model representation has the potential to scale very favorably when the number of model parameters increases, since the number of model coefficients is not related to the dimension of the embedding parameter space. A transmission-line example with up to seven parameters is used to demonstrate the proposed approach.
High-Dimensional Parameterized Macromodeling with Guaranteed Stability / Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2019), pp. 1-3. (Intervento presentato al convegno 2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a Montreal, QC, Canada nel October 6-9, 2019) [10.1109/EPEPS47316.2019.193203].
High-Dimensional Parameterized Macromodeling with Guaranteed Stability
Zanco, Alessandro;Grivet-Talocia, Stefano
2019
Abstract
We introduce a Radial Basis Function (RBF) parameterized macromodeling algorithm, specifically designed for high-dimensional parameters. As opposed to standard approaches, the adopted RBF model representation has the potential to scale very favorably when the number of model parameters increases, since the number of model coefficients is not related to the dimension of the embedding parameter space. A transmission-line example with up to seven parameters is used to demonstrate the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
cnf-2019-epeps-rbf-IEEE.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
883.38 kB
Formato
Adobe PDF
|
883.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cnf-2019-epeps-rbf.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
366.22 kB
Formato
Adobe PDF
|
366.22 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2817654