The feasibility to prepare alkali-activated materials starting from refractory wastes and their properties after exposure to high temperatures (800, 1000, 1200 and 1400 °C) were investigated. Two different aluminosilicate wastes were used: chamotte (CH, mainly composed of corundum, mullite and andalusite) and alumina-zirconia-silica (AZS, composed by baddeleyite, corundum and amorphous silica). Very high mechanical properties were achieved in both cases (28-days compressive strength of approx. 70 and 60 MPa for CH- and AZS-based pastes, respectively). Then, alkali-activated pastes were exposed to high temperatures. For both kinds of samples, a sharp increase of mechanical properties was obtained after exposure to 800 and 1000 °C thanks to the matrix densification. Above 1000 °C viscous sintering occurs leading to a further increase of mechanical properties. AZS-based materials were able to withstand high temperatures up to 1400 °C while CH-based pastes mechanical properties decrease at 1400 °C due to andalusite decomposition.

Alkali-activated refractory wastes exposed to high temperatures: development and characterization / Coppola, B.; Tardivat, C.; Richaud, S.; Tulliani, J. M.; Montanaro, L.; Palmero, P.. - In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. - ISSN 0955-2219. - STAMPA. - 40:8(2020), pp. 3314-3326. [10.1016/j.jeurceramsoc.2020.02.052]

Alkali-activated refractory wastes exposed to high temperatures: development and characterization

Coppola B.;Tulliani J. M.;Montanaro L.;Palmero P.
2020

Abstract

The feasibility to prepare alkali-activated materials starting from refractory wastes and their properties after exposure to high temperatures (800, 1000, 1200 and 1400 °C) were investigated. Two different aluminosilicate wastes were used: chamotte (CH, mainly composed of corundum, mullite and andalusite) and alumina-zirconia-silica (AZS, composed by baddeleyite, corundum and amorphous silica). Very high mechanical properties were achieved in both cases (28-days compressive strength of approx. 70 and 60 MPa for CH- and AZS-based pastes, respectively). Then, alkali-activated pastes were exposed to high temperatures. For both kinds of samples, a sharp increase of mechanical properties was obtained after exposure to 800 and 1000 °C thanks to the matrix densification. Above 1000 °C viscous sintering occurs leading to a further increase of mechanical properties. AZS-based materials were able to withstand high temperatures up to 1400 °C while CH-based pastes mechanical properties decrease at 1400 °C due to andalusite decomposition.
File in questo prodotto:
File Dimensione Formato  
Alkali-activated refractory wastes exposed to high temperatures_development and characterization.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Final_Alkali-activated refractory wastes exposed to high temperatures_low.pdf

Open Access dal 26/02/2022

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2816432