Adynamic regularization scheme for rain-rate retrievals from attenuated radar measurements is presented. Most regularization techniques, including the optimal estimation method, use the state-space parameters to regularize the problem, which will always lead to a bias in the solution. To avoid this problem the authors introduce an evolutionary regularization technique, which is based on the spatial derivative of the measured reflectivity profile and allows for a bias-free global solution. The regularization strength is determined by the quadratic eigenvalue solution using the regularized total least squares method. With the new method, the authors perform a retrieval of rain-rate profiles from simulated measurements of a nadir-pointing W-band (94 GHz) radar, in a configuration similar to the cloud radar employed on CloudSat. The simulations assume that multiple scattering is negligible and only liquid hydrometeors are taken into account. The authors compare the results of this method with the outcome of an optimal estimation method and demonstrate that their method is superior in terms of reliability, correlation coefficient, and dispersion to the optimal estimation method for layers experiencing high values of attenuation; therefore, the a priori bias typical for optimal estimation solutions is avoided. © 2010 American Meteorological Society.
A rain-rate retrieval algorithm for attenuated radar measurements / Koner, P. K.; Battaglia, A.; Simmer, C.. - In: JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY. - ISSN 1558-8424. - 49:3(2010), pp. 381-393. [10.1175/2009JAMC2279.1]
A rain-rate retrieval algorithm for attenuated radar measurements
Battaglia A.;
2010
Abstract
Adynamic regularization scheme for rain-rate retrievals from attenuated radar measurements is presented. Most regularization techniques, including the optimal estimation method, use the state-space parameters to regularize the problem, which will always lead to a bias in the solution. To avoid this problem the authors introduce an evolutionary regularization technique, which is based on the spatial derivative of the measured reflectivity profile and allows for a bias-free global solution. The regularization strength is determined by the quadratic eigenvalue solution using the regularized total least squares method. With the new method, the authors perform a retrieval of rain-rate profiles from simulated measurements of a nadir-pointing W-band (94 GHz) radar, in a configuration similar to the cloud radar employed on CloudSat. The simulations assume that multiple scattering is negligible and only liquid hydrometeors are taken into account. The authors compare the results of this method with the outcome of an optimal estimation method and demonstrate that their method is superior in terms of reliability, correlation coefficient, and dispersion to the optimal estimation method for layers experiencing high values of attenuation; therefore, the a priori bias typical for optimal estimation solutions is avoided. © 2010 American Meteorological Society.File | Dimensione | Formato | |
---|---|---|---|
2009jamc2279.1-compresso.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
7.46 MB
Formato
Adobe PDF
|
7.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2807848