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ABSTRACT

A dynamic regularization scheme for rain-rate retrievals from attenuated radar measurements is presented.

Most regularization techniques, including the optimal estimation method, use the state-space parameters to

regularize the problem, which will always lead to a bias in the solution. To avoid this problem the authors

introduce an evolutionary regularization technique, which is based on the spatial derivative of the measured

reflectivity profile and allows for a bias-free global solution. The regularization strength is determined by the

quadratic eigenvalue solution using the regularized total least squares method. With the new method, the

authors perform a retrieval of rain-rate profiles from simulated measurements of a nadir-pointing W-band

(94 GHz) radar, in a configuration similar to the cloud radar employed on CloudSat. The simulations assume

that multiple scattering is negligible and only liquid hydrometeors are taken into account. The authors

compare the results of this method with the outcome of an optimal estimation method and demonstrate that

their method is superior in terms of reliability, correlation coefficient, and dispersion to the optimal esti-

mation method for layers experiencing high values of attenuation; therefore, the a priori bias typical for

optimal estimation solutions is avoided.

1. Introduction

Spaceborne radars have shown great potential for

providing the vertical structure of cloud and precipi-

tation fields over the whole planet. This has been dem-

onstrated by the 14-GHz precipitation radar on board

the Tropical Rainfall Measuring Mission (TRMM) sat-

ellite, which has been in orbit since November 1997, and

more recently by the cloud profiling radar (CPR) on

board CloudSat, which has been in orbit since June 2006.

Although the CloudSat mission is devoted primarily to

nonprecipitating cloud studies, the CPR is also capable of

resolving many precipitation systems. This finding spurred

interest in assessing the potential of high-frequency ra-

dars for rain retrievals, especially in view of the upcom-

ing global precipitation measurement–European Space

Agency Earth Clouds, Aerosols, and Radiation Ex-

plorer (GPM–EarthCARE) missions, which will deploy

on board both Ka- and W-band radars, and of the cur-

rent deployments of ground-based cloud radars.

It is well known that the attenuation of radar sig-

nals dramatically increases with frequency, whereas the

variability of nonattenuated reflectivity diminishes as

resonance-scattering effects become more pronounced

(Lhermitte 1987). The attenuation issue engenders two

major drawbacks: it drives the reflectivity signal below

the detectability threshold in the presence of strong

rain, and it causes problems in the reconstruction of the

attenuation-corrected reflectivity profile itself. Usually,

radar retrieval algorithms make extensive assumptions

about the structure of drop-size distributions (DSDs) in

order to obtain relations of the form Z 5 aRb and k 5

aRb, which are directly invertible to rain rates R given

radar reflectivity measurements Z. Measured reflectivity

can in principle be corrected for the attenuation effects

by successively correcting bins, starting either close to the

radar (forward Hitchfeld–Bordan method) or at the far

side (backward Hitchfeld–Bordan method; Hitschfeld

and Bordan 1954). The latter method requires the

knowledge of the true reflectivity at the most distant

location, which, for example, can be estimated from the

path-integrated attenuation (PIA) method (description

to follow). The forward method, on the other hand, is

inherently unstable and almost nonfunctional for the

strongly attenuated radars of interest here. The almost

linear dependence between rain intensity and signal
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attenuation can be exploited in statistical attenuation-

based estimation methods such as those recently pro-

posed by Matrosov (Matrosov 2005, 2007; Matrosov

et al. 2006, 2008). The main weakness of their method

is the assumption of vertically constant rain profiles for

layer depths of 1 km, which may be useful for stratiform

rain events only. However, the slope of the vertical re-

flectivity profiles, solely in terms of attenuation effects,

will intrinsically preclude natural vertical variability for

other rain events, especially for hurricanes.

Another approach to avoid the cumbersome param-

eterizations of the previously mentioned methods is

the optimal estimation method (OEM; Rodgers 2000).

OEM accounts for uncertainties in both the algorithm

assumptions and the true information content of the

measurements in a statistically sound approach. The dis-

advantage of OEM, however, is the dependence of the

quality of the retrieved state vector—and of the con-

vergence procedure itself—on the selection of the a

priori vector; the solution is always biased toward the

a priori. Although this can be beneficial in cases when

a priori and actual measurement are of comparable

quality, the bias can be detrimental when climatologi-

cal states are used for the a priori because of the large

variability between the states. Especially for precipi-

tation profiles, it is extremely challenging or even im-

possible to suggest valid a priori and a fortiori profiles

for the accompanying covariance matrices. In these sit-

uations, the structure of the a priori might have little in

common with the true profile. It is a common argument

that a priori information tends to force the solution into

proper behavior; however, very general a priori infor-

mation will just introduce another source of error into

the solution, as we will show.

These drawbacks of the OEM are generally met when

profiling rain intensity with high frequency—that is,

W-band, radars. L’Ecuyer and Stephens (2002) under-

lined this difficulty for rain rates above 1.5 mm h21 and

pointed to the need for additional information such as

PIA, derived from the surface reference technique, or

the precipitation water path, estimated from collocated

passive microwave radiometers to constrain the retrieval.

With this additional information available, accurate,

quantitative rainfall estimates can be made at 94 GHz,

provided the near-surface rain rate does not exceed

10 mm h21.

An alternative approach is a deterministic inversion,

which also helps us to better understand the general

retrieval problem. The deterministic retrieval problem

requires the true inverse solution of the radiative transfer

equation (RTE). For attenuating radars the RTE is non-

linear and the retrieval is inherently mathematically ill

posed. The iterative regularization methods are most

popular for solving nonlinear ill-posed inversion

problems (Sun et al. 2007; Veselovskii et al. 2002; Su

et al. 2007; Demoment 1989; Doicu et al. 2003, 2004;

Ceccherini 2005; Hohage 1997; Steck and Clarmann

2001; Deufhard et al. 1998; Hanke 1997; Riddell et al.

2002; Steck 2002). Regularization usually appears math-

ematically in the form of penalty terms, which constrain

the solution according to the characteristics of the sta-

bilizer (Koner and Drummond 2008b; Tsai and Kao

2006). These stabilizers are generally constructed based

on state-space parameters, which easily introduce biases

and regularization errors into the retrievals. To avoid

this problem, we introduce a new, evolutionary stabi-

lizer based on the spatial derivative of the measurement.

One of the difficulties for any regularization method

in a nonlinear inverse problem is the optimal weighting

of the penalty term as a trade-off between the error and

the spatial structure (resolution) of the solution (Vasco

1997; Ceccherini 2005). The discrete L-curve method is

popular for determining the value of the regularization

parameter in iterative regularization methods; here,

a compromise is made between the minimization of the

constraints and the minimization of the differences be-

tween the measured and simulated spectra weighted by

the noise (Hansen 1998; Schimpf and Schreier 1997).

However, the discrete L-curve method also has some

drawbacks (Rodriguez 2005): there are unexpected os-

cillations near the corners, false corners, and the loss of

convexity, which leads to an inaccurate estimate of the

regularization parameter. Moreover, for severely ill-

conditioned and nonlinear problems, the discrete L-curve

totally loses its ‘‘L’’ shape and the selection of an ap-

proximate regularization parameter becomes difficult.

To solve this problem, we propose the regularized total

least squares (RTLS) method. The RTLS determines

the regularization strength using the error criteria im-

plicitly (VanHuffel and Vandewalle 1991; Sima et al.

2004; Markovsky and VanHuffel 2007). In the following,

we present an approach to solve the attenuated radar

retrieval problem based on a new dynamic regulariza-

tion scheme (DRS). Both the stabilizer and the regula-

rization strength are constructed using the measurement

space parameters dynamically.

2. Mathematical background

Physicists usually develop mathematical models from

physical considerations; however, the solution of a model

often diverges from the intended physics. The inter-

mediate steps of a long calculation may not have a simple

physical meaning nor grant physical insight. For example,

the retrieval error involved in an ill-conditioned inver-

sion hinges not only on the measurement noise but also
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depends on errors associated with the forward modeling,

the Jacobian error, the discretization error, the nonlin-

earity errors, and/or the numerical noise. The estimation

of these methodology errors, that is, errors related to the

forward model, is practically impossible. Even a good

estimate of the measurement noise is often extremely

challenging. If the problem is ill conditioned, however,

such errors are amplified in each iteration because of

the condition number of the Jacobian (see definition to

follow). We will demonstrate this in our study as a spe-

cific example of how the error in the Jacobian feeds back

to the retrieval solution error, even in a simple linear

inversion scheme. Jacobians always have an error (es-

pecially in scattering radiative transfer problems) be-

cause they are evaluated by finite-difference techniques,

with no analytical expression being available. To eluci-

date the problem, we assume a generalized linear equa-

tion of

y5 Jx, (1)

where y is the measurement vector, J is a matrix, and x is

the state vector. In this formulation, J is a linearized

version of the forward operator—that is, the Jacobian of

the RTE. The exact solution of Eq. (1) is x5 J21y, which

only exists, however, when J is nonsingular. If we as-

sume that x 1 dxrty is the exact solution for Jh 5 J1 dJ,

where dJ is the error in the Jacobian, we have to rewrite

so that

(J1 dJ)(x1 dx
rty

)5 y. (2)

If we drop the double-order term and replace y by y 5

Jx, we may write that

dx
rty

5 J�1dJ x. (3)

With k�k, the l2 vector norm (which for a square matrix

corresponds to the absolute value of the largest eigen-

value) becomes

kdx
rty
k # kJ�1kkdJkkxk. (4)

Here, Eq. (4) can be rewritten by multiplying the right-

hand side by kJk/kJk and dividing both sides by kxk:

kdx
rty
k

kxk # kJ�1kkJk kdJkkJk . (5)

By definition the condition number of the matrix J is

given by k(J) 5 kJ21k 3 kJk. Assuming the x and J

spaces to be normalized, it can be shown that

kdx
rty
k # k(J)kdJk. (6)

This implies that the retrieval relative error resulting

from the error in the Jacobian is enhanced by the condi-

tion number of the Jacobian. For example, in the presence

of a relative Jacobian error of 1026, a condition number

of the Jacobian equal to 107 may introduce more than

a 100% error into the retrieval, solely for the Jacobian

error. A well-conditioned matrix has a condition num-

ber of around 1; a matrix is ill conditioned when the

condition number is much greater than 1. We can tenta-

tively classify the ill-conditioned matrices as moderately

ill conditioned 1, k(J), 102, highly ill conditioned 102,

k(J), 108, and severely ill conditioned 108 , k(J), 1016.

Matrices are rank deficient when k(J) . 1016 in a double-

precision calculation. The same relation between the

measurement error and the condition number of a Jaco-

bian is reported (Koner and Drummond 2008b; Danzer

et al. 2004; Gabella et al. 1997). This approach can be

extended to all types of errors in an ill-posed inversion

(the derivations are not shown here), and a generalized

equation can be formulated by assuming an additive na-

ture of the errors:

kdx
rty
k # k(J)�

n

i51
kdE

i
k, (7)

with dEi, i 5 1, 2, . . . , n for the different errors. For ex-

ample, dE1 / dy is the measurement error, dE2 / dJ is

the Jacobian error, dE3 / dh is the nonlinearity error,

dE4 / dx is the discretization error, dE5 / df is the

numerical noises, and so on.

From mathematics, the condition number of the Ja-

cobian is the main source of the error propagation from

the measurement space and inversion space to the state

space and may yield an unacceptable solution. Thus the

reduction of the condition number of the Jacobian for

a Jacobian-based ill-conditioned inversion problem is

of utmost importance. The reduction of the condition

number of the Jacobian can be achieved by introduc-

ing additional constraints (or information). This kind

of regularization should not be mixed up with other

methods for solving these problems—for example, like

the Tikhonov regularization techniques. For the latter

techniques, the solution will contain the regularization

error and bias according to the characteristics of the

stabilizer because the applied mathematical/statistical

constraints are based on the state-space parameters. In

our approach, which will be discussed in more detail in

section 3a, the reduction of the condition number of the

Jacobian is the main target and we use the spatial deriv-

ative of the measurement instead. Thus, our method does

not approximate the solution. More detailed discussions
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about regularization in ill-conditioned inversions can be

found in Schimpf and Schreier (1997) and Koner and

Drummond (2008b).

An important issue is to find the optimal regulariza-

tion strength, which is dependent on the degree of ill

condition of the Jacobian and the error associated to the

problem. Many Jacobian-based techniques determine

the regularization strength using only the measurement

error. There are, however, many other errors and some

of these are virtually impossible to estimate as discussed

previously. Thus, we use the RTLS method, which im-

plicitly considers most errors for the determination of the

regularization strength automatically (see section 3b).

3. Dynamic regularization scheme

The unconstrained optimization related to the regu-

larization of an ill-conditioned Jacobian, given a set of

unknowns x, and measurements [yd(yd 5 y 1 dy), dy of

measurement error] can be formulated as (Wang and

Yuan 2005)

min
x2X

=
a
(x, y)[ ky

d
� f (x)kTky

d
� f (x)k1axTRx, (8)

where, LTL 5 R serves as the stabilizer, L is the regu-

larization operator, yd 2 f(x) is the object function, a is

the regularization strength, and =a(x, y) is the cost

function. The first-order necessary condition for an op-

timum solution for x in our algorithm can be formulated

by taking a derivative of Eq. (8) so that

J(x)[y
d
� f (x)]1aRx5 0, (9)

where, J(x) is the Jacobian of the vector object function

yd 2 f(x). The above formulation is not yet suitable for

numerical computation because of the nonlinearity of

the vector object function. The necessary linearization

can be done by using a Taylor series expansion. The

problem is then solved by iteratively using a linear in-

version of the Taylor series expansion. Thus the mini-

mization at the kth iteration xk becomes

min
S

k
2X

=
a
(S

k
, y)[

1

2
[ky

d
� f (x

k
) � J(x

k
)S

k
k2

1akLS
k
k2],

(10)

with Sk 5 xk11 2 xk as the step size in a search direction.

The main steps of the current algorithm at the kth iter-

ation is as follows:

1) Input xk21 and yd.

2) Develop the finite-difference Jacobian J, based on

the xk21 and the forward model.

3) Develop the evolutionary operator L, using the height

derivative of the measurement (this will be discussed

explicitly in section 3a).

4) Calculate the optimal regularization strength, using the

RTLS method (this will be discussed in section 3b).

5) Calculate the step size in a search direction using

Eq. (10) as

S
k
(x

k�1
)5 (JTJ1aLTL)�1JT[Jx

k�1
� y

d

1 f (x
k�1

)] � x
k�1

. (11)

6) Update the state-space parameter following the

equation xk 5 xk21 1 Sk.

7) Calculate the regularized gradient using Eq. (9) and

Eq. (10) for the convergence check:

G
r
(x

k�1
)5

J
ffiffiffi

a
p

L

" #T

S
k

+* T
J
ffiffiffi

a
p

L

" #T

S
k

* +

5ST
k (JJT 1aLLT)S

k
. (12)

The convergence criterion is based on the familiar con-

dition for a smooth function to achieve a minimum—

that is, its gradient must be zero. Regularization is a

must when the problem is ill conditioned, like for the

present case. There is also the danger of creating a sys-

tematic error resulting from noise, as we will discuss

later. The condition for convergence for the current

problem is to setGr(xk21)� «n. Here, n is the number of

state-space parameters and the default value of 1023 for

« is selected. The previous convergence criterion some-

times may not be sufficient for a highly ill-posed and

noisy system because of the numerical instability. Thus,

we have added the following additional criteria to ter-

minate the iterative loop: 1) a limited number of itera-

tions, 2) when the update of the value in search direction

(Sk
TSk) is very low, and 3) when the residual is less than

the expected noise jdj.
The DRS method presented here, dynamically con-

structs the regularization operator at each iteration step

based on the height derivative of the object function.

The regularization strength and the Jacobian matrix are

also evaluated at each iteration step.

a. Evolutionary regularization operator

The minimization problem of Eq. (10) can be ex-

pressed in an alternative form as

J(x
true

� x
k
)5 y

d
� f (x

k
) and

ffiffiffi

a
p

L(x
true

� x
k
)5 0, (13)
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with xtrue and xk as the true value and the retrieved value

at the kth iteration of the state-space parameters, re-

spectively. Conventionally, L is assumed to be a first- or

second-derivative operator, which minimizes the adja-

cent state-space parameters. In such a formulation, it is

assumed that the right-hand side of the regularization

part of Eq. (13) is zero, which is, however, not exactly

true. For instance, there will be a regularization error if

the true profile is not constant for the first-derivative

operator and if the true profile is not a straight line for

the second-derivative operator.

OEM introduces an a priori constraint to improve

the solution by setting
ffiffiffi

a
p

L(xa � xk) 5
ffiffiffi

a
p

L(xtrue� xk).

Here, L is a Cholesky factorization of the a priori co-

variance matrix (S�1
a ), where S�1

a 5 aLTL (Doicu et al.

2002). This stabilizes the solution around the a priori

state-space vector xa. However, it produces a regulari-

zation error when the truth is not equal to the a priori.

Our new regularization technique is based on the height

derivative of the measurement, as shown later in this

study, and thus, avoids this error.

First, we develop a stabilizer matrix (L) at the kth it-

eration such as

L
k
5

Gh
k1 �Gh

k2 0 0

0 Gh
k2 �Gh

k3 0

�� �� �� ��
0 0 �Gh

kn�1 Gh
kn

2

6

6

6

4

3

7

7

7

5

, (14)

where Gh
k1, Gh

k2, . . . are the elements of the vector of Gk
h.

The vector Gk
h is calculated at the kth iteration using the

Jacobian and the retrieved state-space parameter as

J(xk)xk/xk. The vector Gk
h is the linear slope of the object

function. We construct the regularization matrix Lk, by

taking the finite-difference first derivative of Gk
h [Eq. (14)],

which is equivalent to the one-dimensional Laplacian first-

order derivative operator of the object function.

By definition the Laplacian operator is divfgrad[f(x)]g.

The expression grad[ f(x)] is the slope of f(x) along the

direction where the individual measurement is mini-

mizing the expression. A relation exists between two

measurements along the altitude direction resulting from

attenuation. The finite-difference divergence of the ob-

ject function will, thus, also minimize the cost function in

terms of the attenuation function. Now, we can equate

the finite-difference first derivative of the object function,

with Lk via D[yd 2 f(xk)] 5 L(xtrue 2 xk). Here, D is the

finite-difference first derivative:

D[y
d
� f (x

k
)]5 [y

d
� f (x

k
)]

�

�

�

�

zi
� [y

d
� f (x

k
)]

�

�

�

�

zi11
,

(15)

where j[yd 2 f(xk)]jzi and j[yd 2 f(xk)]jzi11 are the resid-

uals of the measurement at the ith and (i 1 1)th altitude

level, respectively. This process does not use the state-

space parameters; it is based on the finite-difference de-

rivative of the measurement, instead. This introduces an

additional noise component to the retrieval. Our regu-

larization must only reach an optimum reduction of the

condition number of the inverted matrix.

b. Regularization strength

The RTLS method calculates the optimal regulariza-

tion strength by considering the rightmost (i.e., lowest)

eigenvalue of the matrix W (Koner and Drummond

2008a; Lampe and Voss 2007), with

W5L�T[JTJ� g(x)I]L�1 (16)

and g(x) 5 ky
d
� Jxk2/(11 kxk2). A detailed discussion

of Eq. (16) is beyond the scope of this paper but some

considerations are opportune. The rightmost eigenvalue

is the maximal Lagrange multiplier, which leads to the

best solution in the Lagrangian multiplier method (Lampe

and Voss 2008). Equation (16) determines the optimal

regularization strength based on the norm value of the

equivalent residual vector (yd 2 Jx). The norm of the

linearized residual vector is very much proportional to

the different noise realizations associated with the per-

tinent problem. The lowest eigenvalue of W is high (low)

when the value of kyd 2 Jxk is high (low) for the same

J and L matrices. Thus, the optimal regularization

strength is larger in the beginning of the iteration and

decreases when the retrieved state vector approaches

the true state vector. We have also improved the algo-

rithm in such a way that high systematic measurement

noise will not be realized as a signal by modifying the

calculation of g(x) 5 max[ky
d
� f (x)k2/(11 kxk2), kdk].

The calculation of the regularization strength using RTLS

implicitly uses an error criterion, which is very difficult

to estimate explicitly in a nonlinear iterative process.

The success of the retrieval is very often dependent on

the choice of appropriate regularization strength for all

iterations.

c. Error analysis

The determination of the retrieval error for a non-

linear iterative inverse solution is always difficult; how-

ever, a linear error and information content analysis can

be done for simulated retrievals. If we assume that the

numerical noise and the nonlinearity error at the last

iteration are negligible, the retrieval error can be esti-

mated (Koner and Drummond 2008b) using the values

of a, R, and J at the last iteration as

kerrork2
5 k(RKM� I)xk2

1 k(JTJ1aR)�1JTk2hkdyk2i,
(17)
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with RKM 5 (JTJ 1 aR)21JTJ the regularized kernel

matrix; and dy is the measurement noise. The in-

formation content in terms of the degrees of freedom

(DFR) in the retrieval can be calculated as DFR 5

trace(RKM). Note that without regularization (a 5 0)

the regularized kernel matrix is the identity matrix and

DFR 5 dim(x).

4. Forward model

We now study a theoretical retrieval experiment for

a nadir-pointing W-band (94 GHz) radar, in a configu-

ration similar to the CloudSat cloud profiling radar

(CPR). Our DRS retrieval results are compared with the

OEM to gain confidence in the new technique. Similar

to the procedure followed by L’Ecuyer and Stephens

(2002), DSD variability, ice attenuation, and multiple

scattering are not accounted for in this study. It should

be pointed out that the ice/gas attenuation, eventually

estimated by other measurements, can be subtracted

from the total signal similar to the standard practice

(Matrosov et al. 2008). Multiple scattering can play a

role, especially in W-band radars [see, e.g., Battaglia

et al. (2007, 2005) for discussions], but it can also be easily

incorporated and does not pose a problem for the opti-

mization method. We did not include it because a suffi-

ciently fast code was not yet available. The DSD variability

cannot be resolved using single measurements of CloudSat

because of missing additional information. For the nu-

merical simulation of CPR measurements we used 16

vertical range bins, each with a vertical thickness of 250 m.

The measured range-dependent radar reflectivity is sim-

ulated by

Zmeas
5

l4

4p5 Kj j2
e
�2
Ð r

0
kext(s)ds

ð

s
back

(D)N(D) dD, (18)

where l is the radar wavelength, K 5 (m2 2 1)/(m2 1 2)

is the dielectric factor of the scattering target, m is the

complex refractive index of the scatterer, and kext is the

volume extinction coefficient. The exponential factor

accounts for the two-way attenuation along the slant

path s of the radar beam. The quantity N(D) dD denotes

the number of particles with diameters between D and

D 1 dD in the target volume, where sback(D) is the

back-scattering cross section of a raindrop with diameter

D, which we calculate using Mie theory. We made the

simulations based on a drop-size distribution function of

Marshall and Palmer (Marshall and Palmer 1948) for

spherical raindrops:

N(D)5N
0
e�lsdD, (19)

with lsd 5 4.1(RR)20.21, RR the rain rate expressed

in millimeters per hour, and N0 5 8 3 106 m24 the

number density at D 5 0.

5. Results and discussions

We tested our retrieval algorithm using a hurricane

simulation based on the Goddard Cumulus Ensemble-

Cloud Resolving Model (GCE-CRM), which has been

developed and improved at the National Aeronautics

and Space Administration Goddard Space Flight Center

(Tao and Simpson 1993). This simulation is also used for

the Goddard profiling algorithm (GPROF; Olson et al.

1996) along with the OEM as a retrieval method. The

database for the hurricane contains 15 000 rain-rate

profiles, from which we have selected those with sig-

nals above the minimum detection level of CloudSat

(230 dBZ) and with a minimum rain-rate of 0.1 mm h21.

This selection leaves us with 5688 profiles for the study.

We assume a measurement noise of 1 dB for the simu-

lated retrieval.

The a priori profiles for OEM retrievals are derived in

L’Ecuyer and Stephens (2002) by solving for the rain-

rate profiles using the Z–R and k–R relations, which are

based on the Hitschfeld–Bordan algorithm (Hitschfeld

and Bordan 1954). This is a plausible choice at the Ku

band; however, as mentioned previously, this type of

algorithm becomes extremely unstable when reverting

to W-band radars and high rain rates. In these cases it is

almost impossible to get information about the a priori

in the presence of noise. To avoid huge a priori errors,

we assume in this study a vertically constant 5 mm h21

profile as a priori (and an initial guess as well).

a. Retrievals without constraints

The results using both DRS and OEM are shown in

Figs. 1 and 2, respectively. The results of DRS out-

perform the OEM for all layers, except for the highest

layer, where both perform equally well. The correla-

tion coefficient and relative dispersion included in the

figures are average values for four different bins of rain

rates: 0–5, 5–15, 15–30, and above 30 mm h21. The

relative dispersion is the standard deviation between

the true and the retrieved rain rates, divided by the

mean rain rate of the particular bin. The OEM does not

capture the high rain rates for altitudes 1 and 0.5 km; they

are always underestimated. The retrieval results using

OEM at 0.5-km altitude are even negatively correlated,

which indicates that no useful solution has been found.

The average dispersion of the OEM retrievals signifi-

cantly increases with decreasing altitude. For the DRS

retrieval, the average relative dispersion at 0.5 km is
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relatively high (0.2) in comparison with the other layers.

Here, the DRS optimization more often fails to produce

a good solution for low rain rates when the slope of the

backscattering function is very high and the measure-

ments close to the ground layer are strongly affected by

attenuation.

To better understand our results, we analyze in more

detail four critical profiles (Fig. 3). For each profile, we

performed three Monte Carlo simulations by adding

different noise patterns of 1 dB (;23%) to the simu-

lated reflectivity profiles. Figure 3 contains the column

average error (%), which is given by

FIG. 1. Scatterplot of rain-rate retrieval using DRS for four different altitudes.

FIG. 2. Scatterplot of rain-rate retrieval using OEM for four different altitudes.
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with ng and nex as the number of grid points and ex-

periments, respectively. The OEM solution of the pro-

files of 1, 3, and 4 are very poor, whereas the DRS

solutions show higher stability in terms of the column

average error. Only the column average error of profile

2, using the DRS, is higher than using the OEM; how-

ever, this is an artifact of the OEM: the a priori of OEM

forces the lower part of the solution where the infor-

mation from the measurement is very poor and cor-

rupted by a high level of noise. The same OEM artifact

makes the solution totally unacceptable for profile 1.

The reader might wonder whether the OEM does not

reproduce the a priori of 5 mm h21 at surface ranges,

when attenuation diminishes the reflectivity to the noise

level. According to the concept of the a priori infor-

mation in the framework of the OEM, the a priori of

5 mm h21 is expected to be retrieved when there is little

or no information/signal at the surface. However, this is

only true for monotonic functions, and here we are faced

with a complex type of function. We can explain this

behavior with the help of Fig. 3 (see profile 1). The

a priori constraint forces the solution toward 5 mm h21

when the rain rate is high and the Jacobian is ill condi-

tioned. On the other hand, the optimizer minimizes the

residual by redistributing the amount of backscattering

and attenuation internally, which produces successive

inappropriate retrieved state vectors in the intermediate

steps in an iterative process. We can see that the effect of

highly attenuationed component in the total signal,

which would go with a high rain rate can be easily

compensated by reducing the amount of the backscat-

tering component. This forces the rain rate into smaller

and smaller values.

It was expected that OEM provides a good solution

for profile 3 because this profile is quite close to the

a priori profile and within the range of a priori co-

variance. A significant oscillation, however, is observed

because of the fact that the a priori covariance in con-

junction with the error covariance is unable to optimally

reduce the condition number of the inverted matrix and

injects errors into the solution. It should be noticed that

the bottom part of the solution of profile 3 converges to

the given a priori. Both methods produce the wrong

solution for profile 4, which will be discussed later.

Retrieval quality is often judged based on the infor-

mation content in the retrieved result. Table 1 indicates,

however, that the DFR is not necessarily a sound quality

measure. Although the DFR of the OEM-(DRS)-based

retrieved profile 1 (3) is almost equal to that of profile

2 (4), the two retrieved profiles show quite different

FIG. 3. Comparison of the retrievals for four different critical profiles using DRS and OEM.
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column averaged errors. The OEM retrieved profiles are

obviously of lower quality, although the DFR of profiles

retrieved by OEM are much higher. For ill-posed inver-

sion problems, it is mandatory to regularize the problem

at the cost of information content. With no regularization

applied, all the information may remain in the solution;

however, the solution will generally not be acceptable

because of the high retrieval error. In the OEM re-

trieval scheme, the a priori covariance matrix is as-

sumed diagonal with variances of 25 (mm h21)2, which

leads to a low regularization strength and keeps a high

value of DFR. Low variance values in the a priori co-

variance lead to high regularization and the solution

contains large biases. The DRS method, however, re-

trieves profiles with reasonable errors and a DFR just

high enough to allow a sound solution to the problem,

using a bias-free stabilizer and an appropriate regula-

rization strength.

We mentioned the large discrepancy for profile 4,

which can be explained considering the functional property

of the problem. The measured reflectivity has two com-

ponents: back scattering and attenuation (both compo-

nents are functions of rain rate). These terms are opposite

in sign. Such functions are sometimes called Lagrange-

type functions. Attenuation is not only a function of the

rain rate at a particular altitude but also of the rain rate

of all altitudes above the considered level, which makes

the present problem very complex especially for lower

layers. The measured reflectivity values of the upper-

most layers are dominated by the backscattering signal

while attenuation is small. In such a situation, a gradient

can be computed and any gradient search method or

Newtonian iteration can produce a reliable solution.

When moving downward in the profile attenuation in-

creases and the reflectivity approaches zero. Thus, the

backscattering signal and attenuation values become

comparable. It is very difficult to construct a gradient in

such situations and the gradient search method or New-

tonian iteration fails to find a reliable search direction.

To better understand this problem, the measured

reflectivity, the backscattering component, and the at-

tenuation value for both the true and the retrieved rain

rate using DRS for profile 4 are shown in Fig. 4. All three

components of both profiles match well above 2 km.

When the backscattering component and attenuation

become comparable (below 2 km), the gradient-based

search method fails to find a proper search direction;

however, the least squares optimization optimizes the

measured reflectivity within the noise level using in-

appropriate updating of the retrieved state vector. As

a result, the retrieved profile at this region is higher than

the truth. The higher values of both the backscatter

component and the attenuation value compensate each

other as they are of opposite sign. Thus, there are no

reliable solutions if the measured reflectivity at the last

layer is close to 0 (from 3 to 23 dBZ). The calculated re-

flectivity for about 15% of the profiles of our database is

within the upper-mentioned range. It is also observed

that the DRS can produce a reasonable retrieval in this

group if the true profile is fairly constant at the lowest

four layers. This can be explained by the regularization

operator, which is supplying information from the height

derivative measurements to solve these profiles. Even

with a full DFR and with a no measurement noise, the

gradient-based retrieval scheme cannot produce a unique

solution in such a situation. Thus, the information content

measure cannot guarantee a reasonable solution when

the problem suffers in an iterative optimization process

resulting from the functional complexity.

If the reflectivity values for the layers close to the

ground are highly negative, an appropriate search di-

rection can be determined and a reliable solution may be

possible. In such a case, the attenuation values are much

higher than the backscattering component and an ap-

propriate search direction can be determined based on

the dominating attenuation component. Accordingly, a

reasonably good solution is achieved for profile 3 (Fig. 3),

where the reflectivity values near the ground are close to

214 dBZ. The solution suffers, however, from the pre-

vious situation when the backscattering components

largely decrease in the lowest four layers. The slope of

the backscattering component is negative in such situa-

tions, as well as the slope of the attenuation. Thus, the

least squares optimization adds the backscattering com-

ponent to the attenuation value and produces a retrieved

rain rate higher than the true one. For example, the re-

trieved profiles for profiles 2 and 4 (Fig. 3) are too high

using DRS. A reliable solution can be produced, however,

when the rain rate sharply increases for the last four

layers (i.e., profile 1 in Fig. 3). There is also no problem

in getting a reliable solution in this category, if the rain

rate is fairly constant for the last four layers.

TABLE 1. Retrievals of information content DFR for the retrievals using OEM and DRS methods for four different profiles and three

different experiments.

Profile 1 Profile 2 Profile 3 Profile 4

DRS 8.49, 8.49, 8.82 9.58, 9.63, 9.57 6.41, 6.31, 6.40 6.44, 6.58, 6.38

OEM 14.4, 14.3, 14.4 14.1, 14.1, 14.1 13.8, 13.8, 13.8 14.5, 14.5, 14.4

MARCH 2010 K O N E R E T A L . 389



b. Retrieval with constraints

The functional property of the object function changes

for a constrained retrieval. L’Ecuyer and Stephens (2002)

introduced constraints like the liquid water path (LWP)

to improve the retrievals. It can be argued that it may be

difficult (or costly) to have another measurement col-

located in both time and space, a necessity for the pre-

cipitating systems. The PIA estimates can, however, be

obtained from the same radar measurement (e.g., by the

surface reference technique); however, PIA can be esti-

mated only over sea and homogeneous land surfaces—

for example, like rain forests with sufficient accuracy. We

investigated the effect of PIA as a constraint. The OEM

retrievals with PIA improved considerably: the average

correlation increases from 0.4 to 0.53 and the average

dispersion decreased from 0.65 to 0.41. The average cor-

relation of 0.53, however, is still very low and the retrievals

above 10 mm h21 are still not acceptable. This problem

may arise from the assumed a priori profile of 5 mm h21.

Thus, we extended the study using different a priori pro-

files and a priori covariance matrices. Based on the value

of PIA, we have clustered the database into six classes

with a PIA range of 0–5, 5–10, 10–15, 15–20, 20–25, and

25–30 dB. The mean rain rate and the diagonal of the

variance of the rain rate of the individual groups are

then used as a priori profile and a priori covariance

matrix. The construction of the a priori profile and a

priori covariance matrix are based on the truth; there-

fore, there are no guarantees of their validity for other

databases or real measurements. The average correla-

tion further improves to 0.68 and the average dispersion

goes down to 0.27. The results contain, however, a bias

(see Fig. 5), even though the problem is closely well

posed (which will be discussed in the next paragraph).

The biased results can be argued by the fact that the

solution contains an error when the a priori profile is not

equal to the truth, according to the basic assumption of

OEM. The DRS solves the problem constrained with

PIA uniquely neither using an a priori nor an a priori

covariance matrix.

To better understand this behavior, we calculated the

condition number of the Jacobians at the true rain rates

with and without PIA constraints (Fig. 6). Obviously, the

values of the condition number of the Jacobian are re-

duced by many orders of magnitude (ratio of 101221015)

because of the PIA constraint. The condition number of

about 50% of the Jacobians under the PIA constraint is

below 10. When the condition number of the Jacobian is

around 10, any traditional nonlinear least squares can

solve the problem. Thus, we have made a simulated re-

trieval using only the nonlinear least squares method

(see Fig. 7). The statistical values of the retrieval without

any regularization are slightly poorer than the improved

OEM results but there is no bias. The average correla-

tion is 0.64 for a nonlinear least squares case, whereas it

is 0.68 for the OEM, and the average dispersions are 0.27

for both methods. The retrieval quality without any

regularization (Fig. 7) is only degraded because of the

fact that the condition number of 50% of the Jacobians

is above 10 but below 103. In such situations regulari-

zation is needed to block the noise propagation from the

inversion and measurement spaces to the state space.

Thus, we use the DRS technique only when the condition

number of the Jacobian is above 10. With this selection,

we avoid unnecessary numerical computations and un-

wanted numerical noise, when the condition number of

FIG. 4. Simulated measured radar reflectivity, backscattering

component, and extinction of profile 4 (Fig. 3) for true and re-

trieved profiles.

FIG. 5. Scatterplot of rain-rate retrieval using OEM under PIA

constrained for all layers.
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the Jacobian is already low. This combination clearly

produces the best results (Fig. 8): the average correlation

coefficient is 0.89 and the average relative dispersion is

0.12, which indicates that the PIA constraint resolves for

the functional complexity of the problem. These results

are achieved because the new stabilizer does not inject

any bias into the solution and the appropriate regulation

strength is determined using the RTLS method.

The melting layer adds another uncertainty to the prob-

lem. The layer of melting hydrometeors, which is usually is

500–600 m thick in real situations (Kollias and Albrecht

2005), can contribute a substantial amount to PIA. Be-

cause the microphysical characterization of the melting

layer is usually not sufficiently known, the PIA is uncer-

tain even over oceans because it is difficult to separate the

fractions due to rain and due to the melting layer. In

addition, we have to consider the variability in the surface

backscatter and the surface contamination of the lower

500 m. Our DRS methods lead to reasonable solutions

down to 750 m without any constraints in such situations.

6. Conclusions

The retrieval using DRS is a promising technique for

solving the problem of retrieving attenuated radar sig-

nals. The major strength of the DRS is its ability to find

a global solution because it is based on the unbounded

optimization technique. The evolutionary regularization

binds the problem without disturbing the functional

properties of the targeted situation. The DRS produces

a bias-free solution because the regularization is based

on the measurement space vector, instead of the state-

space vector. Because the OEM is based on the bounded

optimization technique, the results are dependent on the

reliability of the boundary conditions or the supplied

a priori information. The DRS does not require the

covariance of the measurement noise and/or any a priori

knowledge of the profile and/or the covariance of the

state-space vector. Note that the DRS algorithm pro-

duces a global solution, not a global fit. We can also

conclude that DRS, unlike the OEM, can solve the

FIG. 6. The condition number of the Jacobians for true profiles without and with PIA

constrained models.

FIG. 7. Scatterplot of rain-rate retrieval using only nonlinear least

squares under PIA constrained for all levels.
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attenuating radar retrieval problem, even when addi-

tional constraints are not available.

We also conclude that the condition number of the

Jacobian is an important parameter to understand ill-

posed inversion problems. The information content in

terms of DFR is not a reliable indicator of the retrieval

quality for the type of problems considered here. Addi-

tional updating of the forward model—such as attenua-

tion by ice–gases and multiple scattering effects—can be

and will be incorporated into the present DRS algorithm.
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