Given a real number τ, we study the approximation of τ by signed harmonic sums σN(τ):=∑n≤Nsn(τ)/n, where the sequence of signs (sN(τ))N∈N is defined “greedily” by setting sN+1(τ):=+1 if σN(τ)≤τ, and sN+1(τ):=−1 otherwise. More precisely, we compute the limit points and the decay rate of the sequence (σN(τ)−τ)N∈N. Moreover, we give an accurate description of the behavior of the sequence of signs (sN(τ))N∈N, highlighting a surprising connection with the Thue–Morse sequence.
Greedy approximations by signed harmonic sums and the Thue–Morse sequence / Bettin, Sandro; Molteni, Giuseppe; Sanna, Carlo. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 366:(2020), p. 107068. [10.1016/j.aim.2020.107068]
Greedy approximations by signed harmonic sums and the Thue–Morse sequence
Sanna Carlo
2020
Abstract
Given a real number τ, we study the approximation of τ by signed harmonic sums σN(τ):=∑n≤Nsn(τ)/n, where the sequence of signs (sN(τ))N∈N is defined “greedily” by setting sN+1(τ):=+1 if σN(τ)≤τ, and sN+1(τ):=−1 otherwise. More precisely, we compute the limit points and the decay rate of the sequence (σN(τ)−τ)N∈N. Moreover, we give an accurate description of the behavior of the sequence of signs (sN(τ))N∈N, highlighting a surprising connection with the Thue–Morse sequence.File | Dimensione | Formato | |
---|---|---|---|
BettinMolteniSannaGreedy20190610.pdf
Open Access dal 22/02/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
598.87 kB
Formato
Adobe PDF
|
598.87 kB | Adobe PDF | Visualizza/Apri |
Greedy approximations by signed harmonic sums and the Thue–Morse sequence.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2802890