Given a real number τ, we study the approximation of τ by signed harmonic sums σN(τ):=∑n≤Nsn(τ)/n, where the sequence of signs (sN(τ))N∈N is defined “greedily” by setting sN+1(τ):=+1 if σN(τ)≤τ, and sN+1(τ):=−1 otherwise. More precisely, we compute the limit points and the decay rate of the sequence (σN(τ)−τ)N∈N. Moreover, we give an accurate description of the behavior of the sequence of signs (sN(τ))N∈N, highlighting a surprising connection with the Thue–Morse sequence.
Greedy approximations by signed harmonic sums and the Thue–Morse sequence / Bettin, Sandro; Molteni, Giuseppe; Sanna, Carlo. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 366(2020), p. 107068.
Titolo: | Greedy approximations by signed harmonic sums and the Thue–Morse sequence |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.aim.2020.107068 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BettinMolteniSannaGreedy20190610.pdf | 2. Post-print / Author's Accepted Manuscript | ![]() | Embargo: 21/02/2022 Richiedi una copia | |
Greedy approximations by signed harmonic sums and the Thue–Morse sequence.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2802890