The Schubert derivation is a distinguished Hasse–Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the integration by parts formula, that also recovers the generating function occurring in the bosonic vertex representation of the Lie algebra gl ∞ (Z), due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian G(r , n) is an irreducible representation of the Lie algebra of n × n square matrices.
Schubert Derivations on the Infinite Wedge Power / Gatto, Letterio; Salehyan, Parham. - In: BULLETIN BRAZILIAN MATHEMATICAL SOCIETY. - ISSN 1678-7544. - ELETTRONICO. - (2020).
Titolo: | Schubert Derivations on the Infinite Wedge Power |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00574-020-00195-9 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Infinite_postprint.pdf | Versione postprint dell'articolo già pubblicato online dalla rivista | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Embargo: 31/01/2021 Richiedi una copia |
Gatto-Salehyan2020_Article_SchubertDerivationsOnTheInfini.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2800034