The Schubert derivation is a distinguished Hasse–Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the integration by parts formula, that also recovers the generating function occurring in the bosonic vertex representation of the Lie algebra gl ∞ (Z), due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian G(r , n) is an irreducible representation of the Lie algebra of n × n square matrices.

Schubert Derivations on the Infinite Wedge Power / Gatto, Letterio; Salehyan, Parham. - In: BULLETIN BRAZILIAN MATHEMATICAL SOCIETY. - ISSN 1678-7544. - ELETTRONICO. - (2020). [10.1007/s00574-020-00195-9]

Schubert Derivations on the Infinite Wedge Power

Gatto, Letterio;
2020

Abstract

The Schubert derivation is a distinguished Hasse–Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the integration by parts formula, that also recovers the generating function occurring in the bosonic vertex representation of the Lie algebra gl ∞ (Z), due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian G(r , n) is an irreducible representation of the Lie algebra of n × n square matrices.
File in questo prodotto:
File Dimensione Formato  
Infinite_postprint.pdf

embargo fino al 31/01/2021

Descrizione: Versione postprint dell'articolo già pubblicato online dalla rivista
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 322.22 kB
Formato Adobe PDF
322.22 kB Adobe PDF Visualizza/Apri
Gatto-Salehyan2020_Article_SchubertDerivationsOnTheInfini.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 511.81 kB
Formato Adobe PDF
511.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2800034