The Schubert derivation is a distinguished Hasse–Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the integration by parts formula, that also recovers the generating function occurring in the bosonic vertex representation of the Lie algebra gl ∞ (Z), due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian G(r , n) is an irreducible representation of the Lie algebra of n × n square matrices.
Schubert Derivations on the Infinite Wedge Power / Gatto, Letterio; Salehyan, Parham. - In: BULLETIN BRAZILIAN MATHEMATICAL SOCIETY. - ISSN 1678-7544. - ELETTRONICO. - (2020). [10.1007/s00574-020-00195-9]
Schubert Derivations on the Infinite Wedge Power
Gatto, Letterio;
2020
Abstract
The Schubert derivation is a distinguished Hasse–Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the integration by parts formula, that also recovers the generating function occurring in the bosonic vertex representation of the Lie algebra gl ∞ (Z), due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian G(r , n) is an irreducible representation of the Lie algebra of n × n square matrices.File | Dimensione | Formato | |
---|---|---|---|
Infinite_postprint.pdf
Open Access dal 01/02/2021
Descrizione: Versione postprint dell'articolo già pubblicato online dalla rivista
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
322.22 kB
Formato
Adobe PDF
|
322.22 kB | Adobe PDF | Visualizza/Apri |
Gatto-Salehyan2020_Article_SchubertDerivationsOnTheInfini.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
511.81 kB
Formato
Adobe PDF
|
511.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2800034