This research evaluates the effects of filler content and silanization on thermal, morphological and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)-based composites. Microfibrillated cellulose (MFC) was obtained by a mechanical treatment of high-pressure homogenization, starting from oat hull fiber, a byproduct of the agri-food sector. MFC reinforced PHBH composites were prepared by melt compounding. SEM and FT-IR analysis showed a good dispersion of the filler in the polymeric matrix, denoting the effectiveness of the surface silanization process. The thermal stability of PHBH composites remains substantially unchanged, and the glass transition temperature marginally increases with the increase of the filler content. Furthermore, silanized MFC shows slightly reinforcing mechanical effects on PHBH composites, such as the increase of 10% of the Young modulus with an increase of the maximum tensile stress as well. This finding has an economical interest since the results showed that MFC, deriving from a byproduct, can be successfully used as filler, decreasing the cost of the bio-based compound leaving substantially unaltered its mechanical and thermal properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48953.
New biocomposite obtained using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and microfibrillated cellulose / Giubilini, A.; Sciancalepore, C.; Messori, M.; Bondioli, F.. - In: JOURNAL OF APPLIED POLYMER SCIENCE. - ISSN 0021-8995. - (2020), p. 48953. [10.1002/app.48953]
New biocomposite obtained using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and microfibrillated cellulose
Giubilini A.;Messori M.;Bondioli F.
2020
Abstract
This research evaluates the effects of filler content and silanization on thermal, morphological and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)-based composites. Microfibrillated cellulose (MFC) was obtained by a mechanical treatment of high-pressure homogenization, starting from oat hull fiber, a byproduct of the agri-food sector. MFC reinforced PHBH composites were prepared by melt compounding. SEM and FT-IR analysis showed a good dispersion of the filler in the polymeric matrix, denoting the effectiveness of the surface silanization process. The thermal stability of PHBH composites remains substantially unchanged, and the glass transition temperature marginally increases with the increase of the filler content. Furthermore, silanized MFC shows slightly reinforcing mechanical effects on PHBH composites, such as the increase of 10% of the Young modulus with an increase of the maximum tensile stress as well. This finding has an economical interest since the results showed that MFC, deriving from a byproduct, can be successfully used as filler, decreasing the cost of the bio-based compound leaving substantially unaltered its mechanical and thermal properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48953.File | Dimensione | Formato | |
---|---|---|---|
2020_Giubilini_New biocomposite obtained using poly PHBH and microfibrillated cellulose.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2794774