Compressed Sensing (CS) has been proposed as a method able to reduce the amount of data needed to represent sparse signals. Nowadays, different approaches have been proposed in order to increase the performance of this technique in each stage that composes it. Particularly, this paper provides a critical review of the state-of-the art of some CS adaptations in the sensing stage to identify the strengths and limitations of each of them. In addition, a new method is proposed (Nearly Orthogonal Rakeness-based CS) that aims to overcome limits of the CS adaptations covered in this work. After intensive numerical simulations on synthetic signals and electroencephalographic (EEG) signals, the proposed approach outperforms discussed state-of-the-art approaches in terms of compression capability required to achieve a target quality of service.
Geometric Constraints in Sensing Matrix Design for Compressed Sensing / Pimentel-Romero, C. H.; Mangia, M.; Pareschi, F.; Rovatti, R.; Setti, G.. - In: SIGNAL PROCESSING. - ISSN 0165-1684. - STAMPA. - 171:(2020), p. 107498. [10.1016/j.sigpro.2020.107498]
Geometric Constraints in Sensing Matrix Design for Compressed Sensing
Pareschi, F.;Setti, G.
2020
Abstract
Compressed Sensing (CS) has been proposed as a method able to reduce the amount of data needed to represent sparse signals. Nowadays, different approaches have been proposed in order to increase the performance of this technique in each stage that composes it. Particularly, this paper provides a critical review of the state-of-the art of some CS adaptations in the sensing stage to identify the strengths and limitations of each of them. In addition, a new method is proposed (Nearly Orthogonal Rakeness-based CS) that aims to overcome limits of the CS adaptations covered in this work. After intensive numerical simulations on synthetic signals and electroencephalographic (EEG) signals, the proposed approach outperforms discussed state-of-the-art approaches in terms of compression capability required to achieve a target quality of service.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0165168420300414-main.pdf
non disponibili
Descrizione: Editorial Version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
geometric_final.pdf
Open Access dal 25/01/2022
Descrizione: Author version of the Paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2790179