A practical number is a positive integer n such that all the positive integers m ≤ n can be written as a sum of distinct divisors of n. Let (un)n≥0 be the Lucas sequence satisfying u0 = 0, u1 = 1, and un+2 = aun+1 + bun for all integers n ≥ 0, where a and b are fixed nonzero integers. Assume a(b + 1) even and a2 + 4b > 0. Also, let (Figure presented.) be the set of all positive integers n such that |un| is a practical number. Melfi proved that (Figure presented.) is infinite. We improve this result by showing that # (Figure presented.) (x) ≫ x/log x for all x ≥ 2, where the implied constant depends on a and b. We also pose some open questions regarding (Figure presented.).
Practical numbers in Lucas sequences / Sanna, C.. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. - STAMPA. - 42:7(2019), pp. 977-983. [10.2989/16073606.2018.1502697]
Practical numbers in Lucas sequences
Sanna C.
2019
Abstract
A practical number is a positive integer n such that all the positive integers m ≤ n can be written as a sum of distinct divisors of n. Let (un)n≥0 be the Lucas sequence satisfying u0 = 0, u1 = 1, and un+2 = aun+1 + bun for all integers n ≥ 0, where a and b are fixed nonzero integers. Assume a(b + 1) even and a2 + 4b > 0. Also, let (Figure presented.) be the set of all positive integers n such that |un| is a practical number. Melfi proved that (Figure presented.) is infinite. We improve this result by showing that # (Figure presented.) (x) ≫ x/log x for all x ≥ 2, where the implied constant depends on a and b. We also pose some open questions regarding (Figure presented.).File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
265.46 kB
Formato
Adobe PDF
|
265.46 kB | Adobe PDF | Visualizza/Apri |
Practical numbers in Lucas sequences.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
461.01 kB
Formato
Adobe PDF
|
461.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2789392