Let ν be a multiplicative arithmetic function with support of positive asymptotic density. We prove that for any not identically zero arithmetic function f such that ∑f(n) ≠01/n < ∞ , the support of the Dirichlet convolution f * ν possesses a positive asymptotic density. When f is a multiplicative function, we give also a quantitative version of this claim. This generalizes a previous result of P. Pollack and the author, concerning the support of Möbius and Dirichlet transforms of arithmetic functions. © 2013 Elsevier Inc.

On the asymptotic density of the support of a Dirichlet convolution / Sanna, C.. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 134:(2014), pp. 1-12. [10.1016/j.jnt.2013.07.012]

On the asymptotic density of the support of a Dirichlet convolution

Sanna C.
2014

Abstract

Let ν be a multiplicative arithmetic function with support of positive asymptotic density. We prove that for any not identically zero arithmetic function f such that ∑f(n) ≠01/n < ∞ , the support of the Dirichlet convolution f * ν possesses a positive asymptotic density. When f is a multiplicative function, we give also a quantitative version of this claim. This generalizes a previous result of P. Pollack and the author, concerning the support of Möbius and Dirichlet transforms of arithmetic functions. © 2013 Elsevier Inc.
File in questo prodotto:
File Dimensione Formato  
Final - On the asymptotic density of the support of a Dirichlet convolution.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 263.23 kB
Formato Adobe PDF
263.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2789388