Let ν be a multiplicative arithmetic function with support of positive asymptotic density. We prove that for any not identically zero arithmetic function f such that ∑f(n) ≠01/n < ∞ , the support of the Dirichlet convolution f * ν possesses a positive asymptotic density. When f is a multiplicative function, we give also a quantitative version of this claim. This generalizes a previous result of P. Pollack and the author, concerning the support of Möbius and Dirichlet transforms of arithmetic functions. © 2013 Elsevier Inc.
On the asymptotic density of the support of a Dirichlet convolution / Sanna, C.. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 134:(2014), pp. 1-12. [10.1016/j.jnt.2013.07.012]
On the asymptotic density of the support of a Dirichlet convolution
Sanna C.
2014
Abstract
Let ν be a multiplicative arithmetic function with support of positive asymptotic density. We prove that for any not identically zero arithmetic function f such that ∑f(n) ≠01/n < ∞ , the support of the Dirichlet convolution f * ν possesses a positive asymptotic density. When f is a multiplicative function, we give also a quantitative version of this claim. This generalizes a previous result of P. Pollack and the author, concerning the support of Möbius and Dirichlet transforms of arithmetic functions. © 2013 Elsevier Inc.File | Dimensione | Formato | |
---|---|---|---|
Final - On the asymptotic density of the support of a Dirichlet convolution.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
263.23 kB
Formato
Adobe PDF
|
263.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2789388