We consider the problem of the recovery of a k-sparse vector from compressed linear measurements when data are corrupted by a quantization noise. When the number of measurements is not sufficiently large, different k-sparse solutions may be present in the feasible set, and the classical `1 approach may be unsuccessful. For this motivation, we propose a non-convex quadratic programming method, which exploits prior information on the magnitude of the non-zero parameters. This results in a more efficient support recovery. We provide sufficient conditions for successful recovery and numerical simulations to illustrate the practical feasibility of the proposed method.
Sparse linear regression with compressed and low-precision data via concave quadratic programming / Cerone, V.; Fosson, S.; Regruto, D.. - ELETTRONICO. - (2019), pp. 6971-6976. (Intervento presentato al convegno IEEE Conference on Decision and Control (CDC) tenutosi a Nice (France) nel 11-13 Dicembre 2019) [10.1109/CDC40024.2019.9030257].
Sparse linear regression with compressed and low-precision data via concave quadratic programming
Cerone, V.;Fosson, S.;Regruto, D.
2019
Abstract
We consider the problem of the recovery of a k-sparse vector from compressed linear measurements when data are corrupted by a quantization noise. When the number of measurements is not sufficiently large, different k-sparse solutions may be present in the feasible set, and the classical `1 approach may be unsuccessful. For this motivation, we propose a non-convex quadratic programming method, which exploits prior information on the magnitude of the non-zero parameters. This results in a more efficient support recovery. We provide sufficient conditions for successful recovery and numerical simulations to illustrate the practical feasibility of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
1909.03705.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
403.81 kB
Formato
Adobe PDF
|
403.81 kB | Adobe PDF | Visualizza/Apri |
09030257.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
383.59 kB
Formato
Adobe PDF
|
383.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2785501