The cable-in-conduit conductor that will be used for the manufacturing of the ITER central solenoid (CS) modules has undergone a long series of qualification tests: the latest was performed in 2015 at QST, Naka, Japan, on the central solenoid insert (CSI) coil. In this work, the AC losses dataset collected during the CSI test campaign is interpreted using a lumped-parameter model for the coupling and hysteresis losses. The model is first benchmarked against the results of the THELMA code and then, after the implementation in the 4C thermal-hydraulic code, successfully validated against experimental data from tests performed on the CSI.With the validatedACloss model, the predictive analysis of the performance of the ITER CS is then carried out using again the 4C code, both in nominal conditions and with a reduced coolant mass flow rate in the most loaded pancake; it is shown that the minimum temperature margin required by the design is always satisfied, for both virgin (1 K) and cycled (1.5 K) conductor.
Modeling the ITER CS AC Losses Based on the CS Insert Analysis / Bonifetto, R.; Bianchi, M.; Breschi, Marco; Brighenti, A.; Martovetsky, N.; Savoldi, L.; Zanino, R.. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - STAMPA. - 29:5(2019), p. 4200907. [10.1109/TASC.2019.2903626]
Modeling the ITER CS AC Losses Based on the CS Insert Analysis
Bonifetto R.;BRESCHI, MARCO;Brighenti A.;Savoldi L.;Zanino R.
2019
Abstract
The cable-in-conduit conductor that will be used for the manufacturing of the ITER central solenoid (CS) modules has undergone a long series of qualification tests: the latest was performed in 2015 at QST, Naka, Japan, on the central solenoid insert (CSI) coil. In this work, the AC losses dataset collected during the CSI test campaign is interpreted using a lumped-parameter model for the coupling and hysteresis losses. The model is first benchmarked against the results of the THELMA code and then, after the implementation in the 4C thermal-hydraulic code, successfully validated against experimental data from tests performed on the CSI.With the validatedACloss model, the predictive analysis of the performance of the ITER CS is then carried out using again the 4C code, both in nominal conditions and with a reduced coolant mass flow rate in the most loaded pancake; it is shown that the minimum temperature margin required by the design is always satisfied, for both virgin (1 K) and cycled (1.5 K) conductor.File | Dimensione | Formato | |
---|---|---|---|
J54_2019_TAS_ITER_CS_CSI_AClosses.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.09 MB
Formato
Adobe PDF
|
4.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
J54_2019_TAS_ITER_CS_CSI_AClosses_AuthorPostprint.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
969.66 kB
Formato
Adobe PDF
|
969.66 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2785238