In this work, in order to accurately predict diffraction phenomena in propagation problems, we introduce the analysis of the scattering of multiple wedges using the semianalytical method known as Generalized Wiener-Hopf Technique. The analysis is of interest to correctly model path-loss in real-life scenarios for wireless communications.
Multiple wedges diffraction in propagation problems using the generalized wiener-hopf technique / Daniele, V.; Lombardi, G.; Zich, R. S.. - ELETTRONICO. - 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings:(2019), pp. 365-366. (Intervento presentato al convegno 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 tenutosi a Hilton Atlanta Hotel, usa nel 2019) [10.1109/APUSNCURSINRSM.2019.8888819].
Multiple wedges diffraction in propagation problems using the generalized wiener-hopf technique
Daniele V.;Lombardi G.;Zich R. S.
2019
Abstract
In this work, in order to accurately predict diffraction phenomena in propagation problems, we introduce the analysis of the scattering of multiple wedges using the semianalytical method known as Generalized Wiener-Hopf Technique. The analysis is of interest to correctly model path-loss in real-life scenarios for wireless communications.File | Dimensione | Formato | |
---|---|---|---|
2019_APS1.pdf
non disponibili
Descrizione: Publisher's version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
194.87 kB
Formato
Adobe PDF
|
194.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
20190118060741_137446_1360.pdf
accesso aperto
Descrizione: Author final version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
189.88 kB
Formato
Adobe PDF
|
189.88 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2784791