Knowing the amount of air pollutants in our cities is of great importance to help decision-makers in the definition of effective strategies aimed at maintaining a good air quality, which is a key factor for a healthy life, especially in urban environments. Using a data set from a big metropolitan city, we realize the uAQE: urban Air Quality Evaluator, which is a supervised machine learning model able to estimate air pollutants values using only weather and traffic data. We evaluate the performance of our solution by comparing the predicted pollutant values with the real measurements provided by professional air monitoring stations. We use the predicted pollutants to compute a standard Air Quality Index (AQI) and we map it into a set of five qualitative AQI classes, which can be used for decision making at the city level. uAQE is able to predict the AQI class value with an accuracy of 0.8.

uAQE: Urban Air Quality Evaluator / Rossi, C.; Farasin, A.; Falcone, G.; Castelluccio, C.. - ELETTRONICO. - LNCS 11912:(2019), pp. 337-343. (Intervento presentato al convegno AMI2019: European Conference on Ambient Intelligence 2019 tenutosi a Roma nel 13/11/2019 - 15/11/2019) [10.1007/978-3-030-34255-5_25].

uAQE: Urban Air Quality Evaluator

Rossi C.;Farasin A.;Castelluccio C.
2019

Abstract

Knowing the amount of air pollutants in our cities is of great importance to help decision-makers in the definition of effective strategies aimed at maintaining a good air quality, which is a key factor for a healthy life, especially in urban environments. Using a data set from a big metropolitan city, we realize the uAQE: urban Air Quality Evaluator, which is a supervised machine learning model able to estimate air pollutants values using only weather and traffic data. We evaluate the performance of our solution by comparing the predicted pollutant values with the real measurements provided by professional air monitoring stations. We use the predicted pollutants to compute a standard Air Quality Index (AQI) and we map it into a set of five qualitative AQI classes, which can be used for decision making at the city level. uAQE is able to predict the AQI class value with an accuracy of 0.8.
2019
978-3-030-34255-5
File in questo prodotto:
File Dimensione Formato  
AmI_2019_paper_30_camera_ready_main.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 247.17 kB
Formato Adobe PDF
247.17 kB Adobe PDF Visualizza/Apri
Rossi2019_Chapter_UAQEUrbanAirQualityEvaluator.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 203.95 kB
Formato Adobe PDF
203.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2781392