One of the main use cases for advanced cellular networks is represented by massive Internet-of-things (MIoT), i.e., an enormous number of IoT devices that transmit data toward the cellular network infrastructure. To make cellular MIoT a reality, data transfer and control procedures specifically designed for the support of IoT are needed. For this reason, 3GPP has introduced the Control Plane Cellular IoT optimization, which foresees a simplified bearer instantiation, with the Mobility Management Entity (MME) handling both control and data traffic. The performance of the MME has therefore become critical, and properly scaling its computational capability can determine the ability of the whole network to tackle MIoT effectively. In particular, considering virtualized networks and the need for an efficient allocation of computing resources, it is paramount to characterize the MME performance as the MIoT traffic load changes. We address this need by presenting compact, closed-form expressions linking the number of IoT sources with the rate at which bearers are requested, and such a rate with the delay incurred by the IoT data. We show that our analysis, supported by testbed experiments and verified through large-scale simulations, represents a valuable tool to make effective scaling decisions in virtualized cellular core networks.

Characterizing Delay and Control Traffic of the Cellular MME with IoT Support / Vitale, Christian; Chiasserini, Carla Fabiana; Malandrino, Francesco; Tadesse, SENAY SEMU. - In: IEEE TRANSACTIONS ON MOBILE COMPUTING. - ISSN 1536-1233. - STAMPA. - 20:4(2021), pp. 1325-1336. [10.1109/TMC.2020.2964677]

Characterizing Delay and Control Traffic of the Cellular MME with IoT Support

Carla Fabiana~Chiasserini;Senay Semu Tadesse
2021

Abstract

One of the main use cases for advanced cellular networks is represented by massive Internet-of-things (MIoT), i.e., an enormous number of IoT devices that transmit data toward the cellular network infrastructure. To make cellular MIoT a reality, data transfer and control procedures specifically designed for the support of IoT are needed. For this reason, 3GPP has introduced the Control Plane Cellular IoT optimization, which foresees a simplified bearer instantiation, with the Mobility Management Entity (MME) handling both control and data traffic. The performance of the MME has therefore become critical, and properly scaling its computational capability can determine the ability of the whole network to tackle MIoT effectively. In particular, considering virtualized networks and the need for an efficient allocation of computing resources, it is paramount to characterize the MME performance as the MIoT traffic load changes. We address this need by presenting compact, closed-form expressions linking the number of IoT sources with the rate at which bearers are requested, and such a rate with the delay incurred by the IoT data. We show that our analysis, supported by testbed experiments and verified through large-scale simulations, represents a valuable tool to make effective scaling decisions in virtualized cellular core networks.
File in questo prodotto:
File Dimensione Formato  
EPS_noed.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
TMC_Christian.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2776776