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Characterizing Delay and Control Traffic of the
Cellular MME with IoT Support
Christian Vitale, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,

Francesco Malandrino, Senior Member, IEEE, and Senay Semu Tadesse, Member, IEEE

Abstract—One of the main use cases for advanced cellular

networks is represented by massive Internet-of-things (MIoT),

i.e., an enormous number of IoT devices that transmit data

toward the cellular network infrastructure. To make cellular

MIoT a reality, data transfer and control procedures specifically

designed for the support of IoT are needed. For this reason, 3GPP

has introduced the Control Plane Cellular IoT optimization,

which foresees a simplified bearer instantiation, with the Mobility

Management Entity (MME) handling both control and data

traffic. The performance of the MME has therefore become

critical, and properly scaling its computational capability can

determine the ability of the whole network to tackle MIoT

effectively. In particular, considering virtualized networks and

the need for an efficient allocation of computing resources, it is

paramount to characterize the MME performance as the MIoT

traffic load changes. We address this need by presenting compact,

closed-form expressions linking the number of IoT sources with

the rate at which bearers are requested, and such a rate with

the delay incurred by the IoT data. We show that our analysis,

supported by testbed experiments and verified through large-

scale simulations, represents a valuable tool to make effective

scaling decisions in virtualized cellular core networks.

I. INTRODUCTION

Massive Internet-of-things (MIoT) is an umbrella term for
a fairly diverse set of applications, including smart factory,
cloud robotics, automotive leveraging smart city sensors, and
surveillance/security; as such, it represents one of the main
motivations behind 5G [2]. For all these applications, service
latency is a critical constraint, even more so than sheer network
throughput. Also, IoT applications are characterized by a very
high density of devices, up to 10,000 devices/km2 [2, p. 6],
and peculiar traffic patterns: devices may be inactive for a
long time, and then multiple devices may transmit data in a
(almost) synchronized manner.

Such traffic patterns are a poor match for the default proce-
dures followed by the cellular core network and such a mis-
match may jeopardize the application-latency requirements.
Indeed, before a terminal can transmit data packets toward
the cellular infrastructure, typically the following operations
are required: authentication, identity verification, and bearer
establishment. If the terminal remains silent longer than a
timeout, the bearer is released and the whole procedure has to
be performed again. Thus, for MIoT traffic, bearer instantiation

A sketch of the present work was included in our poster presented at ACM
Mobihoc 2019 [1].

C. Vitale is with KIOS Center of Excellence, Cyprus. C. F. Chiasserini
and S. Tadesse are with Politecnico di Torino, Italy. C. F. Chiasserini and F.
Malandrino are with CNR-IEIIT, Italy. C. F. Chiasserini and F. Malandrino
are also with CNIT, Italy.

(including bearer establishment and release) is one of the most
critical tasks: using the default procedures would result in an
exceedingly high latency and control overhead, compared to
the data traffic generated by an MIoT device.

To cope with that, 3GPP has introduced a new standard [3],
called Control Plane Cellular IoT Evolved Packet System
(CIoT) optimization, which is already available in off-the-shelf
products [4]. Such a standard (i) simplifies the procedures,
roughly halving the associated overhead, (ii) uses the Mobility
Management Entity (MME) of the cellular core network to
forward user-plane traffic, and (iii) limits the involvement
of MIoT sources in bearer establishment procedures, hence
reducing the power consumption. Importantly, since under the
CIoT optimization the MME is in charge of both control- and
user-plane processing, it bears the brunt of MIoT traffic, thus
becoming the pivotal component of the cellular core. It follows
that the MME performance and the associated delay determine
the ability of the network as a whole to support MIoT traffic.

Ensuring that the MME has sufficient computational ca-
pability to efficiently process the traffic load generated by
MIoT sources becomes even more sensitive in the context of
network softwarization. Such a paradigm refers to a global
trend towards replacing special-purpose network equipment –
including the entities of the cellular core [5] – with virtu-
alized network functions (VNFs) running on general-purpose
hardware. In the case of a virtual Evolved Packet Core (EPC)
[6], the number of MME instances and their computational
capability can be scaled to adapt to the variations in the current
and expected MIoT traffic they must process. In particular, in
the case of the MME, effective scaling requires:
• characterizing the relation between the number of MIoT

sources and the arrival rate of bearer requests at the MME;
• modeling the impact of the MME capacity on the delay

introduced by the bearer establishment procedure.
In this paper, we study both the above aspects with reference

to the case where a network operating according to the
CIoT optimization serves MIoT traffic. Specifically, our main
contributions are as follows:

(i) We begin by characterizing analytically the time between
consecutive bearer instantiation requests coming from MIoT
sources, proving that it is well described by an exponential
distribution;

(ii) By running and profiling the components of a real-world EPC
implementation, we make some fundamental observations on
the system that we then exploit to develop our analytical
model;
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(iii) Leveraging the analytical results on MIoT traffic patterns and
the experimental observations, we build an M/D/1-PS queuing
model of the MME and study how the bearer instantiation
time depends on (a) the traffic load, i.e., the arrival rate of
bearer requests, and (b) the computational capability assigned
to the MME itself. Importantly, we obtain a novel closed-form
expression for the packet forwarding delay as a result of our
analysis;

(iv) We show that the obtained analytical results represent a
powerful tool to drive real-time scaling decisions in soft-
warized cellular networks when dealing with delay-sensitive
applications;

(v) We validate our analysis through large-scale simulations using
both a synthetic traffic model based on the 3GPP standard,
and a real-world scenario including topology and mobility
information from the city of Monte Carlo, Monaco.

The remainder of the paper is organized as follows. After
introducing our system model in Sec. II, we present our
analysis and a closed-form expression for the characterization
of the bearer request arrival process in Sec. III. In Sec. IV, we
run some experiments and make useful observations to develop
our analytical model of the cellular core network. Furthermore,
we characterize the core network delay performance. Through
detailed simulations using both synthetic and real-world traffic,
in Sec. V we show how our analysis can be used to effectively
tune the computational capability of a vEPC. Finally, we
review related work in Sec. VI and conclude the paper in
Sec. VII.

II. SYSTEM MODEL AND PRELIMINARIES

Here, we present the CIoT bearer instantiation procedure [3]
and how the MIoT traffic is served when such a procedure
is adopted. In particular, we consider the current cellular
network, namely, the Evolved Packet Core (EPC), which
is briefly introduced in Sec. II-A. Then we detail the CIoT
bearer instantiation procedure and its relevance to the NB-IoT
standard in Sec. II-B. Finally, we describe the model we adopt
for the IoT traffic, in Sec. II-C.

A. Evolved packet core network
IoT cellular traffic has to traverse the EPC network, which

includes four main components, as depicted in Fig. 1:
• the Serving Gateway (S-GW) mainly routes data traffic and

acts as anchor point when User Equipments (UEs) move
from one eNB to another;

• the PDN Gateway (P-GW) acts as ingress and egress point
of the mobile access network; it is also the responsible for
policy enforcement;

• the Mobility Management Entity (MME) is the termination
point of UE control channels. The MME authenticates and
tracks registered UEs and, most importantly, it handles
bearer activation, i.e., it is the MME that creates a data path
between the UEs and the P-GW. When CIoT optimization
is in place, the data path between the UE and the P-GW
includes the MME itself, since the MME is also responsible
for relaying the traffic of the MIoT sources to the correct
S-GW (see Fig. 1);

Fig. 1. EPC architecture.

• the Home Subscriber Server (HSS) is a central database
where UE-related information is stored. The HSS assists
the MME in UE authentication.

Note that the MME is connected to the S-GWs for bearer
establishment and, under the CIoT optimization, it also per-
forms packet decryption/forwarding, while the P-GW handles
the data traffic to/from several S-GWs. Importantly, in the case
of a vEPC, the MME, P-GW, and S-GW typically run on
different (virtual) machines whose number and capability can
be adjusted as needed.

B. CIoT bearer instantiation procedure

Exactly as any other cellular transmitter, an MIoT source
sends or receives data traffic only if a logical connection
with the corresponding P-GW is in place, i.e., if the MME
has completed the bearer instantiation procedure. However,
unlike the ordinary procedure, the CIoT optimization foresees
that bearers are released immediately after packet transmis-
sion/reception, unless an MIoT source explicitly signals the
presence of imminent traffic. As a consequence, an established
bearer lasts for quite a short time and no handover procedure
is typically required for MIoT traffic at the MME level. In the
following, we therefore focus only on the performance of the
MME when handling bearer instantiation procedures.

As depicted in Fig. 2, each time an MIoT source has to
transmit a packet, five operations are performed: (i) authenti-
cation, (ii) identity verification, (iii) bearer establishment, (iv)
forwarding (after data decryption and integrity check) of the
data packets piggybacked by the MIoT source in the Radio
Resource Control (RRC) Early Data Request message, and (v)
bearer release. Specifically, hereinafter bearer establishment
will refer to the set of operations comprised between step 1
and step 6 (included) in Fig. 2. We remark that such a proce-
dure represents a crucial contribution to the data forwarding
latency, and it cannot be overlooked in the MIoT data delay
computation. Indeed, the time needed to complete a bearer
establishment also corresponds to the delay incurred by the
data transfer within the EPC.

Finally, it is worth remarking that CIoT well pairs up
with the Narrowband IoT (NB-IoT) standard – both being
specifically designed to support massive IoT traffic, taking,
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Fig. 2. CIoT bearer instantiation procedure and uplink data transmission.

respectively, the core network side and the radio access per-
spective. Indeed, NB-IoT is an IoT system built from existing
LTE functionalities, which aims to support over 50,000 low-
data rate stationary devices within a cell-site sector [7]. Beside
defining an energy-efficient and robust physical layer for
enhanced indoor coverage, NB-IoT also effectively addresses
cell search, synchronization, and random access for initial
link establishment. Specifically, according to NB-IoT, the RRC
establishment on the top-right of Fig. 2 summarizes the follow-
ing steps [8]: (a) the UE transmits a random access preamble;
(b) the eNB replies with a random access response including
a timing advance command and which uplink resources are
assigned the UE to perform (c); (c) the UE transmits its
identity; (d) the eNB transmits a message to resolve any
contention due to multiple UEs accessing the channel (in step
(a)) using the same preamble.

C. IoT traffic model
As mentioned above, after data transmission/reception, the

MIoT source’s bearer is released and a new bearer has to
be established if later on the MIoT source has some more
traffic to send/receive. Intuitively, depending on the IoT traffic
pattern, the time between subsequent data packets may vary
significantly, and so does the rate of bearer instantiation
requests of an MIoT source. In order to characterize the arrival
process of bearer requests, in the following we consider the
traffic model described by the 3GPP standard [9] for machine
type communications.

In [9], MIoT sources are organized in groups. Reflect-
ing real-world operation conditions, [9] envisions quasi-
synchronous packet transmissions within a group. This rep-
resents, for example, a group of sensors monitoring a geo-
graphical area, programmed to raise an alarm when a specific
event occurs. After the occurrence of the event of interest, e.g.,

a gas leak, the closest sensors to the event raise the alarm.
Sensors neighbouring the area where the event occurred react
to the event subsequently, with a delay due to the propagation
of the phenomenon. Such an effect triggers alarms from all
the sensors belonging to the group, with a peak of alarms
(hence, of traffic) roughly at the center of a period and an
aggregate traffic distribution over time that follows a Beta(3,4).
In [9], the events, and the related group transmissions, occur
in subsequent periods of duration T , each of which with an
aggregate traffic distribution over time following a Beta(3,4).

Notice that this model is quite general. Indeed, modifying T

allows us to account for different aggregate transmission rates,
while setting the group size to 1 allows us to represent MIoT
sources behaving independently from each other. Furthermore,
as we explain later in Sec. III, the model can be easily adapted
to include data aggregators (a.k.a. gateways) that, as often
envisioned in sensor network applications, collect and forward
the data packets generated within groups of MIoT devices.

The traffic model specified by the 3GPP standard represents
the aggregate behavior of a set of MIoT sources. However,
we are interested in characterizing the latency of the data
transfers by individual sources, each of which requires a bearer
instantiation. In order to address this issue, we leverage the
data generation model for an individual IoT device presented
in [10], which results in an aggregate group traffic that still
matches the Beta(3,4) distribution specified by the 3GPP
standard.

In [10], each MIoT source is modeled as a Markov chain
including two states, named regular operation and alarm, and
hereinafter denoted with R and A, respectively. The period T

of the IoT traffic pattern is divided into an arbitrary number N
of slots, each of duration �. In state A, the MIoT source
sends packets according to a Poisson process with mean �A,
which, without loss of generality and consistently with [10],
we set equal to 1 packet/slot, i.e., an MIoT source successfully
transmits at least one data packet with probability (1� e

�1).
Introducing such a probability of transmitting (at least) one
packet while being in state A allows capturing communi-
cation aspects that may arise in real-world IoT scenarios,
e.g., transceiver failure or harsh propagation conditions due
to the unfavourable IoT location. In state R, instead, the
MIoT source transmits packets with an arbitrary small rate
✏, representing, e.g., keep-alive or synchronization messages
(in [10] the average transmission rate in state R is set to
�R=0.0005 packet/s).

In each slot n (n = 1, ..., N ) within a period T , the MIoT
source may move from one state to the other. When in A,
the source moves to R in the next time slot with probability
1. When in R, the source moves to A in time slot n with
probability mass function (pmf)1

fb(n), which depends on the
considered slot in the period. As shown in [10], fb(n) can be

1The pmf of a discrete random variable x at n will be denoted by fx(n).
The evaluation at n of the pmf of x conditioned to the random variable y,
when y = m, will be denoted by fx(n|y=m) Also, we will indicate with
P(X) the probability of a specific event X . The probability density function
(pdf) and the cumulative density function (CDF) of a continuous random
variable x will be denoted by fx(y) and Fx(y), respectively.
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obtained from the sampling of the Beta(3,4) shape2, as follows:

fb(n) = Beta
✓
n�

T

◆
�

T
= 60

✓
n�

T

◆2✓
1�n�

T

◆3
�

T
. (1)

In summary, given the above IoT traffic model, on average,
an MIoT source visits state A once every T seconds, and
therein it transmits a packet with probability (1�e

�1). Instead,
when an MIoT source sojourns in state R, it transmits a packet
every 1/✏ s. In the following, we assume that ✏ is small enough
so that we can neglect the occurrence of a packet transmission
in state R (this holds, e.g., setting ✏ to the value suggested in
[10]).

Finally, from (1), we observe that an MIoT source moves
from state R to state A with a probability that only depends
on slot n, not on the past, nor on the activity of other MIoT
sources. It is important to point out two aspects that justify
the use of such a model:
(i) even if in the model the single IoT traffic does not
depend on the past, the obtained overall aggregate traffic of a
group still follows the Beta(3,4) distribution suggested by the
3GPP specification, i.e., the group aggregate traffic follows the
typical pattern of a set of sensors reacting to a specific event;
(ii) from the perspective of the core network, it does not
matter which IoT sensor within a group triggers an alarm;
indeed, each IoT transmitter within a group performs the
same bearer instantiation procedure and introducing spatial
correlation between IoT sensors activity does not have any
impact on the MME load and the resulting distribution of the
packet forwarding latency.

TABLE I
TABLE OF NOTATIONS

Symbol Variable
� slot duration
T time between events monitored by MIoT groups
N number of slots in a period T

Q number of MIoT sources served by the EPC
fb(n) (fb(n)) probability of transition from R

to A in slot n (time t)
� time between bearer requests at the EPC
s slot (time) of the last bearer request
sq slot (time) of the last bearer request by source q

↵ time between the last bearer request and
the next transition to A by any source

↵q time between the last bearer request and
the next transition to A by source q

!q offset of the time reference of source q

with respect to source 0
E(z,�↵) Erlang CDF with shape z and rate �↵

�x rate of the exponential random variable x

OX number of CPU operations per bearer
procedure for EPC entity X

CX capacity, in CPU operations/s, of entity X

d time between a bearer request and its completion,
v delay due to the MME of the

bearer establishment procedure
K constant delay due to all EPC entities, other

than the MME, in bearer establishment

2Note that the Beta(3,4) distribution is only defined in [0, T ].

III. IOT CONTROL TRAFFIC CHARACTERIZATION

To evaluate the delay performance of the MME when the
CIoT optimization is supported, we first prove that the arrival
process of the bearer instantiation requests at the MME follows
a Poisson distribution. To this end, in this section we derive
F�(·), the cumulative distribution function (CDF) of the time
interval between subsequent bearer instantiation requests at the
MME. The steps we perform are summarized below:
(i) we observe that, under the CIoT optimization, every time
an MIoT source has a new packet to transmit, the MME
has to establish a new bearer and forward the packet to the
right S-GW. Thus, the time interval between subsequent bearer
instantiations by the MME corresponds to the time interval
between packet transmissions by any of the MIoT sources
served by the MME;
(ii) we then derive F↵(⌧ |s = t), the distribution of the time
interval between a packet transmission by any source in the
system and the subsequent visit to state A by any, potentially
different, MIoT source;
(iii) for � ! 0, we prove that such a distribution does not
depend on the time of the last transmission in the system and
turns out to be exponential. Furthermore, the result holds also
for the time interval between subsequent packet transmissions,
i.e., the inter-arrival time of bearer requests at the MME.

All notations we adopt are summarized in Table I; we also
mention that the term “packet transmission” is often used
interchangeably with “bearer request”.

A. Inter-arrival time between bearer requests
In the following, we consider Q MIoT sources served by the

same MME, generating traffic according to the 3GPP model
described in Sec. II-C. As the first step, we fix to k the time
slot at which the last transmission in the system occurred and
we compute f↵(m|s=k), i.e., the probability density function
(pdf) of the time interval between k and the slot in which the
first device, among the Q MIoT sources, moves to state A. It
is easy to see that f↵(m|s=k) can be written as the minimum
over the time intervals between k and the first visit to A of
the Q MIoT sources, i.e.,

f↵(m|s=k) = fmin(↵q)(m|s=k) . (2)

In the above expression, ↵q is the time interval between k and
the transition to state A of the MIoT source q, and fmin(↵q)(·)
is the pdf of the minimum over the ↵q’s.

Using (2) and considering the fact that in the adopted MIoT
traffic model, MIoT packet transmissions are independent of
each other, the CDF F↵(m|s=k) can be obtained as the
minimum among random variables:

F↵(m|s=k) = 1�
QY

q=1

�
1�F↵q (m|s=k)

�
. (3)

As already mentioned, an MIoT source moves from state
R to state A with a probability that depends only on the slot
within period T corresponding to time k, i.e., on k only and not
on the past. Thus, in the following proposition, we can prove
that (3) can be computed as if any MIoT source q transmitted
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its last packet in k, i.e., denoting with sq the slot of the last
packet transmission3 by q, F↵q (m|s=k) = F↵q (m|sq=k),
8q. This is an important property, which allows us to greatly
simplify the subsequent derivations.

Proposition 1. Denote with s the variable representing the
slot in which the last packet transmission in the system by any
of the MIoT sources occurred, and with ↵q the time interval
between slot s and the subsequent transition of the q-th MIoT
source to state A. Since the IoT traffic does not depend on the
past, ↵q can be computed as if the last packet transmission
in the system was by q. Denoted with sq the slot of the last
packet transmission by q, for a sufficiently large number of
slots in period T , i.e. for a small �/T , we get:

F↵(m|s=k) = 1�
QY

q=1

�
1�F↵q (m|sq=k)

�
. (4)

Proof. The proof of the proposition can be found in Appendix
A in the Supplemental Material.

The above proposition tells us that F↵(m|s=k) can be
derived by analyzing the dynamics of the individual MIoT
sources separately, i.e., through the CDF of the time interval
between the last transmission by q and the subsequent visit
to state A of q itself, which is significantly easier to compute
than using F↵q (m|s=k).

Next, we rewrite F↵q (m|sq=k) accounting for the time
reference of source q. To this end, we recall that each source
belongs to a specific group and it is quasi-synchronized only
with the IoT sources belonging to that group, while different
groups may exhibit a temporal offset with respect to each other
4. By taking as global reference the time of source 0, we denote
with !q 2 {0, ..., N�1} the time offset between source 0 and
the q-th source (q = 1, . . . , Q� 1). Then (4) can be rewritten
as:

F↵(m|s=k) = 1�
QY

q=1

�
1�F↵q (m|sq(k,!q))

�
, (5)

where sq(k,!q)=mod(k+!q, N) and

F↵q (m|sq(k,!q)) =
mX

x=1

fb(mod(sq(k,!q)+x,N)) ·

sq(k,!q)+x�1Y

y=sq(k,!q)+1

[1�fb(mod(y,N))] , (6)

with fb(n) being the transition probability from R to A given
in (1). In (6), F↵q (m|sq(k,!q)) has been derived considering
the probability that the following sequence of events takes
place: no transition into state A for m�1 slots, and a transition
into state A, exactly m slots after sq(k,!q).

We now switch to continuous time and evaluate the system
dynamics when the slot duration � tends to 0. We recall

3Since different groups are not syncronized with each other, i.e., time k

corresponds to different slots within the period of different MIoT sources,
F↵q (m|sq=k) depends on MIoT source q.

4Sources belonging to the same group have zero offset relatively to each
other.

that the duration of slot � is arbitrary and it only affects
the number of slots within a period of activity of a group,
without affecting the MIoT traffic model. Let us denote with
t the reference time of MIoT source 0, with sq(t,!q) the time
instant of MIoT source q in its period corresponding to t, i.e.,
sq(t,!q)=mod(t+!q, T ), and with ⌧ the interval from the last
transmission in the system to the time of the first transition
from R to A by any of the MIoT sources.

First, for � ! 0, we rewrite (5) and (6), respectively, as,

F↵(⌧ |s=t) = 1�
QY

q=1

�
1�F↵q (⌧ |sq(t,!q))

�
(7)

and

F↵q (⌧ |sq(t,!q)) =

Z ⌧

0
fb (mod(sq(t,!q)+x, T )) ·

sq(t,!q)+xY

y=sq(t,!q)

(1�fb(mod(y, T )) dx, (8)

where fb(x) can be obtained directly from (1) as,

fb(x) =
60
�
x
T

�2 �
1� x

T

�3

T
(9)

Looking at (7), one can see that, when the number of MIoT
sources in the system grows, the time interval between a packet
transmission and the subsequent visit to state A by any MIoT
source decreases dramatically, since the minimum over a large
number of positive random variables should be considered.
Consequently, it is enough to provide an expression for
F↵q (⌧ |sq(t,!q)) that is accurate for small values of ⌧ ; given
that, we can assume: sq(t,!q)+⌧ < T, 8 sq(t,!q) 2 [0, ..., T ].
Then a good approximation of F↵q (⌧ |sq(t,!q)) for Q large,
hence ⌧ small, is given by:

F↵q (⌧ |sq(t,!q)) =

Z ⌧

0
fb(sq(t,!q)+x)

sq(t,!q)+xY

y=sq(t,!q)

(1�fb(y)) dx .

(10)
Interestingly, the product form in (10) is the Volterra’s

product integral. Using such an integral expression in (10),
we obtain:

F↵q (⌧ |sq(t,!q)) =

Z ⌧

0
fb (sq(t,!q)+x) e

Z sq(t,!q)+x

sq(t,!q)
�fb(y)dy

dx.

(11)
Replacing (9) in (11) and solving both integrals, we get:

F↵q (⌧ |sq(t,!q)) = 1� e
� ⌧

T

✓
60

⇣
sq(t,!q)

T

⌘2⇣
1� sq(t,!q)

T

⌘3
◆

· eo(⌧
2)

(a)
⇡ 1� e

�fb(sq(t,!q))⌧ , (12)

where (a) holds for ⌧ small. As a result, for Q large,
F↵q (⌧ |sq(t,!q)) follows an exponential distribution with rate
parameter fb(sq(t,!q)). Substituting (12) in (7), we obtain:

F↵(⌧ |s=t) ⇡ 1� exp

 
�

QX

q=1

fb(sq(t,!q))⌧

!

= 1�e
��↵|t⌧ , (13)
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which states that, when Q grows large, F↵(⌧ |s=t) follows an
exponential distribution with rate �↵|t =

PQ
q=1 fb(sq(t,!q)).

Interestingly, under the above conditions, we can write:

�↵|t ⇡ Q

Z T

0
P(sq(t,!q))fb(sq(t,!q))d!q

= Q

Z T

0

fb(sq(t,!q))

T
d!q

=
Q

T

, �↵ , (14)

where we considered that:
• exploiting the law of large numbers, the experienced �↵|t is

approximated accurately by its average value;
• for high values of Q, also the number of IoT groups served

by the MME grows large, hence the offsets !q can be
assumed to be random variables uniformly distributed in
[0, T ];

• such an observation holds also for sq(t,!q), 8t, since, by
definition, sq(t,!q) = mod(t+!q, T );

Note that (14) not only states that F↵(⌧ |s=t) follows an
exponential distribution, but also that such a distribution does
not depend on t, i.e., F↵(⌧ |s=t)=F↵(⌧).

We now use this result to compute the CDF of the inter-
arrival time between subsequent bearer instantiation requests
at the MME, i.e., F�(⌧). We account for the fact that not all
transitions to state A by an MIoT source lead to a packet
transmission: after a transition in state A by an MIoT source,
the probability of transmitting at least a packet is equal
to 1�e

�1. Thus, we compute F�(⌧) considering that two
subsequent transmissions in the system are separated by z�1
transitions to state A without any transmission. Given the fact
that the time for a transition to state A is well described by
an exponential distribution (F↵(⌧)), we compute F�(⌧) as a
sequence of z i.i.d. exponentially distributed time intervals,
i.e., an Erlang(z,�↵) distribution, weighted by the probability
that two subsequent transmissions in the system are separated
exactly by z transitions to state A. Denoting the Erlang(z,�↵)
distribution with E(z,�↵), we write:

F�(⌧) =
1X

z=1

FE(z,�↵)(⌧)(1� e
�1)(e�1)z�1

. (15)

In (15), we remark once again that the probability of
transmitting at least one packet in state A is an input data
to the model, and the specific value in [10] can be substituted
with any arbitrary value (even 1, assuming that packets are
always sent successfully upon visiting state A). Using the
above results, we can prove the theorem below.

Theorem 1. When the IoT group offsets are independent of
each other and Q grows large, F�(⌧) is given by:

F�(⌧)=1�e
���⌧

with rate parameter �� = Q(1�e�1)
T .

Proof. The proof of the theorem can be found in Appendix B
in the Supplemental Material.

The above result states that the inter-arrival time between
bearer establishment requests at the MME follows an expo-
nential distribution, which implies that the number of requests
that the MME, hence the EPC, receives in a time interval
follows a Poisson distribution. This is a key result that allows
us to characterize first the control overhead due to bearer
establishment and forwarding, and then the delay performance
of the EPC. Note that the above result holds also in more
general scenarios where there are aggregators relaying the data
packets generated by the MIoT sources (and requesting for
bearer instantiations) to the MME.

IV. EPC MODEL AND ANALYSIS

In this section, we begin by showing the results of our
experimental study, which highlight the following facts: (i)
the bearer establishment takes a deterministic amount of
processing, (ii) the variation in the delay of EPC entities
other than the MME is negligible, (iii) a PS well mimics the
MME serving policy. To perform our validation, we run and
profile the components of a real-world EPC implementation
called OpenAirInterface (OAI) [11], as described in Sec. IV-A.
Then, based on the above key observations, we analytically
characterize the EPC control overhead and, using a M/D/1-PS
model, we derive an expression for the delay experienced by
the MIoT traffic within the EPC.

A. Understanding the EPC through the OpenAirInterface im-
plementation

The OAI EPC is an implementation of the cellular core
network where the MME and the HSS are implemented as
separate entities, while the S-GW and the P-GW as a single
unit (called SPGW). To investigate the interaction between
the EPC and the IoT sources, we connected the OAI EPC to
a software simulator of the Radio Access Network (RAN),
called Open Air Interface Simulator (OAISIM). Herein, UEs
and eNBs communicate with the OAI EPC through an Ethernet
cable, sending and receiving control messages as if a real RAN
was in place.

The use of OAISIM implicitly creates some limitations to
our experimental results, the most important one the fact that
OAISIM supports a maximum of 3 simulated UEs in our
setting. Nevertheless, we use OAI EPC and OAISIM for our
study because it is an open-source controlled environment
where the behavior of the EPC and the UEs can be controlled
at the millisecond time-scale. Also, importantly, OAI EPC
is compliant with Release 10 functionalities, and off-the-
shelf smartphones can connect to the OAI EPC. Finally, we
mention that, even if OAI EPC implements the standard bearer
establishment procedure, which includes a superset of the
messages exchanged between the EPC entities during the CIoT
bearer instantiation procedure, below we report the results
considering only the messages included in the CIoT procedure,
as depicted in Fig. 2.

The total number of CPU operations for each EPC entity,
obtained by profiling the OAI EPC with the Callgrind tool
from the Valgrind suite [12], is depicted in Fig. 3. Therein,
the number of users attached to the EPC varies from 1 to
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Fig. 3. Number of CPU operations required by bearer establishment vs.
number of UEs.

3, and each data point has been obtained using 20 runs,
resulting in a 95% confidence interval of up to ±0.7% of the
plotted percentile values. Note also that, in each run, every
UE performs one bearer establishment.

Fig. 3 demonstrates that the job size associated with a bearer
establishment procedure is fixed and deterministic. This is
shown by two facts: (1) the number of operations required for a
bearer establishment procedure grows linearly with the number
of bearer instantiation requests, and (2) the variation of the
number of CPU operations required by the EPC entities across
different runs is negligible. The former is further highlighted in
the plot by the excellent match between the solid line, showing
the experimental values, and the dotted line, which represents
a linear fit whose slope is forced to the average number
of CPU operations required by a single bearer instantiation.
The latter fact, instead, can be observed from the boxplots
in Fig. 3, representing the 10-th and 90-th percentile of the
CPU operations distribution: the variance is very small in all
analyzed cases and for any of the EPC entities in the system.

The second important observation we can make by looking
at Fig. 3 is that the MME is the dominant component of the
performance for the EPC: the number of operations required
by any other entity is at most the 13% of those needed by
the MME. Given the fact that typical EPC implementations
include entities with similar computational capability [13], as
the traffic load changes, it is fair to neglect the variations in the
delay introduced by entities of the EPC other than the MME.

We also performed dedicated experiments to grasp some
insights on the policy used by the OAI EPC implementation
to serve packets that are simultaneously queued at the dif-
ferent entities. In this set of experiments, in order to avoid
interference, we isolate MME, SPGW, and HSS, assigning
to each entity a dedicated CPU core of the PC acting as
EPC. Note that all the UEs emulated through OAISIM make
a bearer request almost simultaneously and it is not possible
to determine beforehand their time of attachment. Therefore,
users contend for the same resources during nearly the whole
duration of the bearer establishment. The first and second
column of Table II show the average (over 20 runs) and the
standard deviation of the time elapsing between the first and

TABLE II
BEARER ESTABLISHMENT TIME. 1 UE VS. 2 UES

1 UE Bearer Time 2 UEs Bearer Time 2 UEs Bearer Time
Average 1st User - Avg. 1st User - PS Avg.

0.84± 0.02 s 1.63± 0.03 s 0.87± 0.02 s

the last packet processed by the MME with one UE and two
UEs, respectively. In the case of two UEs, we only consider
the data relative to the bearer establishment of the first UE. In
the third column, we demonstrate that it is fair to assume that
a PS policy is in place. Indeed, considering the time in the
second column, and halving the time in which the procedures
of the two UEs overlap, we obtain a value that is very close
to the one in the first column.

Finally, we argue that our experimental results, although
obtained for 3 users, have general validity. Indeed,
• the MME uses a PS policy to serve the incoming traffic and

the number of served users does not have any impact on the
service policy of the system. Note that such an observation
is consistent with the fact the PS policy closely emulates
the behaviour of a multi-threaded application running on a
virtual machine instantiated on commodity hardware;

• the number of CPU operations required by a bearer estab-
lishment procedure using CIoT optimization is deterministic
at any entity (as also described in, e.g., [14]), and does not
depend on the number of on-going procedures;

• the MME is the computational bottleneck of the EPC,
which is also evident given the load and the capacity values
assigned to the EPC entities [13].

It is therefore fair to consider that the assumptions we make,
based on our experimental findings, still hold as the number
of IoTs grows.

B. Control Overhead and EPC Delay Characterization

As discussed above, the bearer establishment procedure in
Fig. 2 requires a deterministic number of CPU operations.
Then, at every entity X involved in the procedure, each
bearer instantiation is characterized by a fixed number of
CPU operations OX , which is the sum of the CPU operations
required by the messages in Fig. 2. It follows that the mean
number of CPU operations per second that entity X has to
perform is given by: E[µX ] = ��OX .

Next, we derive the pdf, fd(⌧), of the interval between
a bearer request and its completion, i.e., the time passing
from the first to the last message in Fig. 2. To this end, we
exploit the fact that the inter-arrival time of bearer requests at
the MME follows an exponential distribution, as well as the
observations set out below, which have been derived through
the experimental measurements.

(a) The MME is the main bottleneck of the control plane.
As shown experimentally in Sec. IV-A, the computational
load requested to the MME for a single bearer imple-
mentation is roughly one order of magnitude larger than
the computational load requested to any other entity.
This implies that the CPU utilization of entities other
than the MME is very low and variations of the control
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message processing times can be neglected, i.e., they can
be considered as constant.

(b) As shown above, the MME serving policy can be mod-
eled through a PS discipline.

(c) It is fair to assume that the duration of a specific bearer
instantiation procedure is very short compared to the
timescale at which the MME load varies. When the
utilization of the MME is high, and making scaling deci-
sions is critical, the number of competing messages at the
MME is high as well. Thus, during the short time-scale
of a bearer instantiation (in the order of milliseconds),
the difference between the number of incoming and
outgoing messages at the MME is negligible if compared
to the number of queued messages. It follows that the
fraction of capacity assigned, according to the PS policy,
to an MIoT bearer request does not vary throughout a
bearer instantiation procedure and the processing time of
each message belonging to the same bearer instantiation
is roughly the same (as in an M/D/1-PS queue). Thus,
each bearer request can be considered as a single job,
even if composed of multiple subsequent messages, with
a computational load equal to OMME .

Given the above observations and the result in Theorem 1,
we model the MME as an M/D/1-PS queue, where the
deterministic service time depends on the capability of the
MME, while the rate of arrivals of the bearer instantiation
requests is equal to �� , as reported in Theorem 1. Then fd(⌧)
can be written as,

fd(⌧) = fv(⌧) +K, (16)

where:
• fv(⌧) is the pdf of the time spent by a bearer instantiation

at the MME, i.e., the sojourn time of a job in the M/D/1-PS
queue;

• K is the constant delay due to entities other than the MME
(see our observation (a) above), which can be computed as:

K =
OUE

CUE
+
OeNB

CeNB
+
OHSS

CHSS
+
OS�GW

CS�GW
+
OP�GW

CP�GW
, (17)

where OX is the total number of CPU operations that entity
X has to perform for each bearer establishment, while CX

is the computational capability of entity X , expressed in
CPU operations per second.
To derive fv(t), we leverage the results in [15], which,

owing to the complexity of computing such a distribution,
provides the following approximation for the CDF:

Fv(⌧) ⇡  e
��⌧

. (18)

In the above equation,  is given by [15]:

 =
(1� ⇢)(�� � �)

2��(1� ⇢)� �⇢(2� ⇢)
,

where ⇢ = ��D is the control traffic load at the MME, with
D = OMME

CMME
being the deterministic service time of the bearer

instantiation at the MME, and � is the only positive solution
of [15, Eq. (3.2)].

We remark that, given the pdf of the time interval between
a bearer instantiation request and its completion (i.e., fd(⌧)),
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Fig. 4. Inter-arrival time distribution of bearer requests: analysis vs. simulation
using the 3GPP traffic model.
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Fig. 5. Delay distribution: analytical vs. simulation results, using the 3GPP
traffic model.

we can compute the pdf of the delay that the control plane
introduces in handling data packet forwarding at the MME
when the CIoT optimization is supported. The derivation of the
latter pdf implies considering only the messages in Fig. 2 that
are exchanged till the data packet transmission is completed.
Then, based on our earlier observation (c) and given the
number of CPU operations required by each message, we can
obtain the pdf of the MIoT traffic latency by properly scaling
fd(⌧).

V. MODEL VALIDATION AND EXPLOITATION

In the following, we show how the behaviors – inter-
arrival times and bearer instantiation delays – predicted by
our analysis match those yielded by extensive simulations,
using both synthetic traffic models [3] (Sec. V-A) and real-
world mobility traces (Sec. V-B). Furthermore, we demonstrate
how our model can be leveraged in the dimensioning and
management of vEPC networks handling MIoT traffic.

A. 3GPP synthetic traffic
We developed a Matlab simulator that accurately imple-

ments the 3GPP traffic model described in Sec. II-C. The
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parameters we used are as follows: T = 10 s (as specified
in [3]), � = 10µs, and group size equal to 50 MIoT sources.

Model validation. Here we validate the approximations
introduced in our analysis as well as our main result in Sec. III
(i.e., the inter-arrival time of bearer requests is exponentially
distributed). To compare F�(⌧), computed as in Theorem 1, to
the CDF of the inter-arrival time of bearer requests at the MME
in simulation, we performed extensive experiments, varying
the number of groups in the scenario and the offsets between
them !q . In Fig. 4, we present the results obtained with a
specific set of offsets, as the number of groups served by the
MME varies; however, similar results have been also obtained
changing the !q values.

With as few as 10 groups served by the MME, Fig. 4
highlights that simulation and analytical results closely match,
thus showing that the exponential F�(⌧) captures very well
the behavior of the 3GPP traffic model presented in Sec. II-C.
Furthermore, as expected, the match between the two curves
improves as the number of groups served by the MME grows.

We now validate our delay model presented in Sec. IV-B.
We first remark that, for the analytical derivation of fd(⌧), we
neglected the load due to the integrity check and decryption,
at the MME. Indeed, while a single control message requires
(roughly) one million floating-point operations [14], studies on
commodity processors show that nowadays a 50-byte packet
(as in the case of IoT applications) requires few hundreds
of floating-point operations for encryption/decryption [16].
In our simulations, instead, we account for data encryp-
tion/decryption as well as integrity check at the MME. Second,
to compute the constant delay component of the delay distri-
bution, K, in (17), we proceed as follows:

• we obtained the number of CPU operations, OX , required
at the EPC entities by a bearer establishment through our
experimental measurements described in Sec. IV-A, and

• we leveraged the work in [13], which provides the compu-
tational capability of the EPC entities, CX , based on real-
world data from a large mobile network operator.

Finally, in order to validate the analytical expression of
fd(⌧), we extended our Matlab simulator to perform the whole
procedure in Fig. 2, starting from the S1-AP Initial Message
sent by the eNB. In our setup, all MIoT sources belonging to
the same group, each containing 50 MIoT sources, are attached
to the same eNB. Several eNBs may be attached to the same S-
GW, while all S-GWs are attached to the same P-GW. Except
for the RRC connection closing message sent by the eNB to
the UE, all messages belonging to the same bearer instantiation
travel sequentially between the involved entities, as foreseen
by the CIoT optimization. Each entity is implemented as a PS
server whose service rate matches the processing capability
provided in [13].

Fig. 5 shows the analytical and experimental Fd(⌧) in
different scenarios. Specifically, we present the results of the
CIoT optimization for two different values of traffic load, i.e.,
with Q = 10, 000 and Q = 15, 000. In the latter case, we
also study two different configurations of the EPC to check
whether changing the number of eNBs/S-GWs in the system
has an impact on Fd(⌧) or not.

First, we observe that the CDF of the bearer instantiation
delay computed through (16)-(18) closely matches the experi-
mental delay obtained via simulation – a fact that is especially
evident looking at the tail of the CDFs. This result proves that
considering the whole bearer establishment handshake as a
single job at the MME, plus a constant delay due to the other
entities, is a valid approximation. Small differences between
the analytical and experimental CDFs for low values of delay,
are mainly due to the model in [15], used to approximate
the sojourn time in an M/D/1-PS queue. Indeed, due to the
complexity of the M/D/1-PS characterization, [15] explicitly
aims at modeling with higher accuracy the tail of the sojourn
time CDF, which is what most matters in delay sensitive
applications. Second, for Q = 15, 000 the simulation results
highlight that the two configurations with a different number of
S-GWs provide exactly the same delay CDF, which validates
our finding: Fd(⌧) depends only on the number of MIoT
sources in the scenario, and it is not affected by variations in
the number of eNBs and S-GWs. This confirms that the MME
delay contribution dominates that of the other EPC entities.

Model exploitation. We now show how our model can be
used to develop efficient scaling algorithms for EPC networks
serving MIoT traffic. Let us consider the following case,
reflecting, e.g., a smart factory or cloud robotics application
[17], where the delay introduced by the EPC should be less
than 0.1 s with 0.99 probability. Since the delay performance
depends on the number of MIoT sources served by the
EPC and on the capability of the EPC entities, we need an
algorithm that, given the IoT traffic, scales the capability of
the EPC entities according to the number of MIoT sources
in the system. Such an algorithm can leverage the analytical
expression of Fd(⌧) we obtained.

As an example, we considered a simple threshold-based
algorithm, which, as the number of active IoT sources grows,
increases the computation capability of the EPC entities by
100%, and then by 150%, with respect to the initial value,
depending on the MME delay predicted by our model (note
that increasing the EPC capability by 100% can be realized
by creating a new instance of its components). As shown
in Fig. 6, such an algorithm meets the target performance.
The figure also reports the delay corresponding to the cases
when the capability values CX are fixed to the initial value
provided in [13], and to such a value increased by 100% or
by 150%. Although more advanced scaling algorithms may be
designed, we remark that, thanks to our model, even a simple
threshold-based algorithm is able to meet the target delays
and that our analysis, coupled with off-the-shelf virtualization
tools like OpenStack, can be a key enabler to the support of
IoT applications with delay guarantees.

B. Real-world trace

We now consider a real-world setting and leverage a large-
scale mobility trace generated accounting for the MoST sce-
nario [18]. The MoST scenario is a highly detailed representa-
tion of the mobility in the Monte Carlo urban area, including:
(i) a multi-layered road topology, with tunnel and bridges;
(ii) multi-modal mobility, e.g., users driving to a parking lot
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percentile.

and riding public transportation thence; (iii) multiple types of
coexisting users, e.g., commuters and tourists. The scenario
models the mobility of a total of 27, 967 users throughout
an 8-hour period from 5 AM to 1 PM, and includes a
total of 607 tagged points of interest (POIs) such as offices,
restaurants, and tourist attractions. We assume that every time
a user visits or stops at one of the POIs, a sensor, e.g., an
identity-recognizing device, is triggered, resulting in a packet
transmission, hence, a bearer instantiation request towards the
MME serving the area.

Model validation. Our first objective is to establish whether
the inter-arrival time between bearer requests obtained experi-
mentally matches the exponential distribution F�(⌧) obtained
through our analysis. To this end, we divided the time into
8 periods of one hour each, and computed the empirical
distribution of the inter-arrival time of bearer instantiation
requests in the MoST trace in every time period. The average
arrival rates of bearer requests in the the various periods are
very different, reflecting the daily fluctuations in mobility.
Nevertheless, as exemplified in Fig. 7, the match between the
analytical and the empirical distribution is excellent for all the
time periods, proving that the inter-arrival time of the bearer
requests obtained from the MoST trace follows an exponential
distribution as well. This confirms that our analysis holds also
for applications that do not follow explicitly the 3GPP traffic
model described in Sec. II-C.

Then we used the bearer requests obtained from the MoST
trace to evaluate if the delay distribution of the bearer request
procedures can be approximated with fd(⌧) (as in (16))
also in this realistic IoT scenario. We fed to the previously
mentioned Matlab simulator the time instants of the bearer
requests by sensors in the MoST trace and, since the number
of bearer requests is rather small even in the rush hour, we
reduced the EPC entities capability of one order of magnitude.
The analytical and simulation results for the rush hour are
compared in Fig. 8, where the bearer establishment procedure
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Fig. 7. MIoT trace: Comparison between analytical and empirical distribution
of the inter-arrival time of bearer requests at the MME, for two representative
time periods.
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MoST trace.

delay is normalized by K (with K given in (17)). Given
the fact that the largest difference between the two CDFs
(which happens for low values of delay) is very small, we
can conclude that our analysis well approximates the behavior
of the EPC when serving MIoT sources, also in the case of a
realistic scenario as the one of the MoST trace.

Model exploitation. We now present how our analytical
results can be exploited under the MoST scenario. Fig. 9
shows the time evolution of the 99�th percentile of the
bearer instantiation delay, for different values of capability
CX . Considering a target performance of 0.1 s, we observe that
the simple scaling algorithm employed when deriving Fig. 6
(and which exploits our analytical results) successfully meets
the delay requirement even under a sudden and very significant
surge in the bearer request rate (see the black line in Fig. 9).

VI. RELATED WORK

IoT support through cellular networks has recently attracted
significant attention by both the scientific community and the
standardization fora.

A first body of works deal with the requirements posed by
IoT scenarios, and how 5G networks can cope with them.
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As an example, [19] quantifies the latency and capability
requirements for the main IoT scenarios, from factory au-
tomation to parking machines, and discusses the improvement
needed to both the radio access and core networks. The CIoT
optimization and the role of MME are, however, not accounted
for in [19], which mainly focuses on the SGW/PGW gateways.
[17] has a narrower focus, namely, cloud robotics, and presents
a working prototype; however, the latency introduced by
the core networks and the entities therein is not taken into
account. [20] and [21], instead, present the impact on the
radio access, e.g., on Cloud-RAN, of IoT-specific physical
layers, such as NB-IoT. Note that these works tackle the IoT
support in cellular networks from the perspective of centralized
IoT transmission coding/decoding, but they do not take into
account IoT optimized control procedures, such as the CIoT.

Among the studies that do account for the core network,
most, including [22], [23], envision a virtualized network,
where network functions are implemented through VNFs.
Unlike our work, [22] does not specifically target EPC or
any of its entities. The authors of [23], focusing on multicast
traffic in IoT scenarios, specifically study the MME delay.
Their proposed solution is to endow the SGW with some of
the MME tasks, the opposite of the CIoT optimization we
consider in our study.

The use of NFV and SDN, for the implementation of the
EPC under massive IoT traffic conditions, has been discussed
in [24], while enhancements to the standard EPC can be
found, e.g., in [25]. That work introduces new entities in
the network architecture, which are specifically devoted to
the IoT support. Importantly, although such solutions yield a
remarkable performance improvement, they inevitably involve
significant changes to the standard.

Analytical models of IoT systems have been developed
for specific application use cases, like management [26],
opportunistic crowd sensing in vehicular scenarios [27], or
ambient backscatter devices [28]. Other works have presented
theoretical models for the study of networking aspects such as

the performance of middleware protocols [29], implemented
between the application and the transport layer, or of the
random access procedure in NB-IoT [30], [31]. Note, however,
that none of the above works investigates the critical role of the
EPC control plane in IoT-based systems; indeed few studies
exist on the characterization of the overhead and service delay
when the EPC handles massive IoT data traffic. In this context,
the studies that are the most relevant to ours are [13] and
its extension [32], which present a scheme for aggregating
multiple IoT bearers and analyze the gain that is obtained with
respect to the standard procedure. Such works, however, are
based on deterministic inter-packet transmission time for MIoT
sources and do not address the most recent and efficient 3GPP
specifications for IoT support. Likewise, the study in [14]
analytically evaluates the EPC control procedures (not specific
to CIoT optimization) considering a simple IoT traffic model,
coexisting with other cellular traffic sources. Furthermore,
unlike our work, both [14] and [32] derive only the average
processing latency of standard bearer establishments. A more
comprehensive study on EPC control procedures has been
presented in our conference paper [33], which, however, does
not address any delay analysis.

To the best of our knowledge, our work is the first one
presenting the delay distribution under the CIoT optimization
and deriving an exponential inter-arrival time for MIoT bearer
establishments at the MME. It is important to stress that, in our
paper, exponential inter-arrival times are not an assumption,
but the result of the analysis in Sec. III, which is based on
the 3GPP MIoT traffic model [9] and has been validated
in Sec. V. A sketch of our work has been presented in our
poster publication [1]. Finally, we remark that the goal of our
work differs significantly from that of [10], which presents
the Markov Modulated Poisson Process (MMPP) model for
individual IoT sources that we adopt to develop our analysis
and that is in accordance with the 3GPP traffic model for
IoT. Indeed, [10] investigates large-scale IoT scenarios via
simulation only: it does not present any analytical model of
the EPC or of its control procedures under IoT traffic support.

VII. CONCLUSIONS

Effectively dimensioning the cellular core network and
evaluating its latency performance are crucial tasks for the
support of massive IoT applications. Observing that the MME
has a major impact on the control-plane latency, we charac-
terized the statistics of the latency it introduces. In particular,
we derived closed-form expressions that link the number of
IoT devices to the inter-arrival times of bearer instantiation
requests. Then, leveraging these results and an M/D/1-PS
queue model of the MME, we characterized the latency
experienced by IoT traffic in the cellular core. Importantly, our
analysis is also based on findings obtained by measuring and
profiling the performance of a real-world EPC implementation.
Furthermore, using both the 3GPP traffic model and a real-
world, large-scale mobility trace, we validated via extensive
simulations the distribution of request inter-arrival times and
of the IoT traffic latency.

We demonstrated that our model and results can be exploited
to dimension the computation capabilities of the entities of
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the virtualized cellular core as the offered IoT traffic load
varies. Future work will leverage our results to design more
advanced algorithms for the scaling of the resources allocated
to virtualized EPC entities as the traffic load varies, and assess
their performance using real-world EPC implementations.
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