Structural hierarchy coupled with material heterogeneity is often identifi ed in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our group.
Computational modeling of the mechanics of hierarchical materials / Signetti, S.; Bosia, F.; Pugno, N. M.. - In: MRS BULLETIN. - ISSN 0883-7694. - 41:9(2016), pp. 694-699. [10.1557/mrs.2016.185]
Computational modeling of the mechanics of hierarchical materials
Bosia F.;
2016
Abstract
Structural hierarchy coupled with material heterogeneity is often identifi ed in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our group.File | Dimensione | Formato | |
---|---|---|---|
2016_Signetti_MRS_Bull.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
498.07 kB
Formato
Adobe PDF
|
498.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
postprint.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2774892
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo