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Computational modeling of the mechanics of hierarchical materials 

Stefano Signetti, Federico Bosia, and Nicola M. Pugno 

Abstract 

Structural hierarchy coupled with material heterogeneity is often identified in 

natural materials, from nano- to macroscale. It combines disparate mechanical 

properties, such as strength and toughness, and multifunctionality, such as smart 

adhesion, water repellence, self-cleaning, and self-healing. These architectures 

can be employed in synthetic bioinspired structured materials, also adopting 

constituents with superior mechanical properties, such as carbon nanotubes or 

graphene. Advanced computational modeling is essential to understand the 

complex mechanisms that couple material, structural, and topological hierarchy, 

merging phenomena of different nature, size, and time scales. Numerical 

modeling also allows extensive parametric studies for the optimization of material 

properties and arrangement, avoiding time-consuming and complex experimental 

trials and providing guidance in the fabrication of novel advanced materials. Here, 

we review some of the most promising approaches, with a focus on the methods 

developed by our group. 
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Introduction 

For centuries, Nature has provided inspiration for man in the design and 

manufacture of structural materials. Many natural materials display fascinating 

physical and mechanical properties that, until recently, have been hard to replicate 

in artificial materials and structures. These include high stiffness and low 

density,1 strong adhesion and easy detachment,2 self-sharpening,3 self-healing, 

growth, and adaptive tissue organization, water-repellence, self-cleaning, and 

super hydrophobic or super-hydrophilic behaviors.4,5 All of these properties are 

usually related to complex multiscale structural arrangements of different 

constituents, from the nano- to the macroscale, involving material mixing and 

grading, interaction between constituents, and, most importantly, hierarchy, 
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intended as the property whereby a material exhibits structure on more than one 

length scale.6–8  

In the study of bioinspired materials, the focus is on the link between 

material properties and the emerging of specific functions across all relevant 

scales. The main lesson from Nature is that complex behavior and functionality 

derives from structure, hierarchy, and optimal organization of simple basic 

components. This is in stark contrast to many engineered materials, which exploit 

the properties of exotic metals or polymers, with associated high production and 

environmental costs. Nature has successfully done more with less, in terms of 

material design and production. This paradigm could, in principle, also apply to 

synthetic materials, and can be transposed to many fields in engineering, with the 

potential to do even better than Nature, in the absence of limiting biological 

constraints. 

Experimental tests and measurements on hierarchical materials can be 

difficult to rationalize due to high uncertainties and statistical dispersion at the 

nanoscale, difficulties in sample manipulation and characterization, problematic 

reproducibility of boundary conditions and, in some cases, the impossibility of 

direct experimental verification at all the different size scales. Thus, due to the 

complexity and cross-scale interaction of the physical phenomena involved, 

further progress requires comprehensive numerical modeling. The challenge is to 

integrate multiple length scales and physical phenomena within the same 

simulation framework, since in hierarchical structures, a piecewise understanding 

of individual parts cannot simply be assembled or superimposed: the whole is 

greater than the sum of the individual parts.9,10 

Numerical modeling of biological and bioinspired material properties 

Computational methods for modeling the mechanics of hierarchical materials 

need to span the various size and time scales of the problems involved. These can 

be divided schematically into three broad categories: (1) nanoscale—methods like 

density functional theory (DFT) or molecular dynamics (MD), to achieve 

characterization of the basic constituents of hierarchical composites; (2) micro-

/mesoscale—fiber bundle model (FBM), lattice-spring model (LSM), discrete and 
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meshless methods to reconstruct the role of hierarchy and material mixing in 

characteristic mechanical properties of composites; and (3) macro-scale—finite 

element methods (FEM) and discrete or boundary element methods (DEM or 

BEM) to model complex mechanical problems at the continuum level for solids, 

and particle methods for fluid mechanics, based on Navier-Stokes or Boltzmann 

equations. Figure 1 depicts the overall scenario of these multiscale analysis 

techniques. 

Computational methods can provide new insights in the comprehension of 

fracture mechanisms in heterogeneous/hierarchical/multiscale structures, 

beginning with the nanoscale. Various multiscale models have been developed to 

capture the mechanisms involved in the optimization of global material 

mechanical properties.11–13 One example is represented by the so-called fiber 

bundle models (FBM),14 which are particularly appropriate for the simulation of 

fibrous materials, often occurring in biomaterials. Here, material structure at a 

certain size scale is modeled as a network of fibers arranged in parallel (same 

level) and in series (different levels) subjected to uniaxial tension, with 

statistically Weibull-distributed yield and fracture strengths or strains. Usually, an 

equal-load-sharing hypothesis is adopted,14 whereby when fibers fracture, stresses 

are redistributed uniformly among the remaining fibers in the bundle. Multiphase 

media are modeled by assigning different mechanical properties the fibers of each 

bundle.  

We introduced a hierarchical extension of the Hierarchical Fibre Bundle 

Model (HFBM), whereby the input mechanical behavior of a subvolume or 

“fiber” at a given hierarchical level is statistically inferred from the average 

output deriving from repeated simulations at the lower level, down to the lowest 

hierarchical level15 (Figure 2a). Results from this and other implementations of 

HFBM show that specific hierarchical organizations can lead to increased damage 

resistance (e.g., self-similar fiber reinforced matrix materials)16 or that the 

interaction between hierarchy and material heterogeneity is critical, since 

homogeneous hierarchical bundles do not display improved properties.17 The 

effect of defects at the nanoscale can also be accounted for, and the HFBM has 
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been used to estimate the strength and stiffness of macrostructures such as the 

futuristic nanotube-based space elevator cable, highlighting the defect-related 

decrease in performance with respect to estimations based on ideal defect-free 

materials.18  

Similar approaches, appropriate for two-dimensional (2D) or three-

dimensional (3D) simulations, are the lattice spring models (LSM)19 or random 

fuse models,20 which provide a continuum description of the media through a 

network of discrete elements (springs or “resistors”). These have been used to 

simulate plasticity, damage propagation, and statistical distributions of 

“avalanches” of fracture events in heterogeneous materials20. Similar to the 

procedure adopted for HFBM, we recently introduced the hierarchical lattice 

spring model (HLSM), extending the classical LSM21 (Figure 2b). Other 

analytical theories such as our quantized fracture mechanics22 (QFM) or atomistic 

methods such as MD can be integrated in these multiscale approaches, for 

instance, to determine constitutive laws at the lower scale as a function of atomic 

structure, defect content, or molecular organization. 

Other computational approaches that can also be used to model fracture 

propagation in a multilevel scheme include 3D meshfree models, useful for 

simulating complex 3D heterogeneous media with nonlocal effects.23,24 These 

methods have also been implemented in a multiscale scheme.25 Standard FEM 

approaches based on erosion algorithms are pushed to their limits when dealing 

with fracture nucleation and propagation, therefore, various strategies have been 

adopted, such as mesh adaptive refinement during the evaluation of model 

solutions, the use of cohesive zone model (CZM)-based elements, or extended 

FEM (XFEM).26 Peridynamics is a meshless method whose nonlocal response 

represents an ideal bridge between atomistic (MD) and continuum methods.27 

This novel approach is based on a nonlocal and integral reformulation of the 

standard continuum theory of solid mechanics, which is applicable even when 

cracks and other singularities appear in the deformation field. Since peridynamics 

models continuous media, discrete particles, and defects using the same set of 

equations, it provides a means to couple different length scales.27 
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Applications of modeling biomaterials 

Both theoretical models and the previously described and other numerical 

methods have shown that reinforcement organization in biological or bio-inspired 

composite materials can increase damage tolerance, avoiding direct crack path 

propagation and drastically improving the global response.28 Studies have focused 

on the influence of the structure, reinforcement shape, aspect ratio, dispersion, 

organization, and of mechanical properties of the constituents at various scale 

levels, iteratively deriving higher scale mechanical properties from lower ones, 

until a global material response is obtained.29  

As an example, the macroscopic nonlinear (hyperelastic) constitutive 

properties of spider silk derived from atomistic simulations have been shown to 

play an essential role in the macroscopic robustness of spider webs,7 since 

simulations demonstrate that the same type of impact would cause more 

widespread damage for linear elastic and elastic-perfectly plastic counterparts. 

Another example of how an integrated framework can synergistically combine 

scalable modeling using coarse-graining and mesoscopic dissipative particle 

dynamics simulations for bioinspired design can be found in studies on silk 

spinning.30 The combined multiscale use of different computational techniques 

such as HFBM and HLSM has also proved to be successful in reproducing the 

macroscopic behavior of artificial nanocomposites such as gelatin-graphene oxide 

fibres.31 Mesoscale models allow the design of composite materials exhibiting 

tailored fracture properties, drawing inspiration from mineralized biological 

composites.32 

Another biomaterial property that has been studied and simulated in recent 

years is self-healing (Figure 2a), and its effects on the elastic, fracture, and fatigue 

properties of materials.33 Self-healing is incorporated in HFBM/HLSM models by 

replacing fractured fibers or springs with intact ones (the process of healing) 

having appropriate mechanical properties, volume fractions, replacement rates, 

and locations as damage evolves during simulations. The main control parameter 

is the “healing rate,” defined as the ratio of the number of healed and fractured 
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fibers in a given fixed time interval. “Both distributed” and “local” healing 

processes can be simulated, whereby fractured fibers are replaced either over the 

whole structure, or at concentrated locations where damage is accumulated, 

respectively.34 It has been found that a hierarchical structure increases the 

efficiency of self-healing, leading to increased toughness with respect to the 

corresponding nonhierarchical case and fatigue resistance, e.g. in tendons.35 

The problem of simultaneous optimization of strength and toughness in 

materials also appears in the field of high-energy shock loadings (e.g., impacts, 

cutting, and blasts). Indeed, energy dissipation must occur in limited volume of 

material in these cases, since heavy structures are generally undesirable, such as 

in body armors, helmets, and crashworthy components for automotive or 

aerospace applications.  

Extreme specific impact toughness may be pursued, for example, by the 

adoption of graphene-based nanocomposites36,37 or through smart bioinspired 

structural solutions. Dermal armors of different animals, such as the  Arapaima 

gigas fish scales and many species of beetles, have several common 

characteristics, such as hard and patterned front layers,38,39 and a   backing 

sequence of softer layers,38,40 with overall flexibility of the armor (when required 

for locomotion) guaranteed via discrete systems of interconnected scales.38,40,41 

All of these features are generally synergistically coupled with hierarchical 

assembly, which optimizes layer thickness strength and stiffness.38,42  

The large variety of parameters to be considered in the study of these 

biological systems due to heterogeneity, the numerous levels of hierarchy, and the 

complexity of the constitutive laws (often strain-rate dependent) make 

experimental tests scarcely viable, and computational techniques are needed for 

the study of toughening mechanisms and for the design and optimization of 

bioinspired armors. Nowadays, commercial software offers robust nonlinear FEM 

tools for the analysis of these types of large-scale problems at an acceptable 

computational cost. HFBM and HLSM are useful in providing advanced 

constitutive response to be used as input in FEM simulations that can, therefore, 

be limited to details at the upper scale (Figure 2b). Thus, a series of parametric 
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studies, each replicating thousands of experiments, can be performed. For 

example, the relationship between specific energy absorption in multilayer armors 

and the interface strength between layers, which could be tuned via different 

adhesive materials or with bioinspired hierarchical structuring of surfaces,43 has 

been rationalized and explained through a FEM study on composite multilayer 

structures.44 

Modeling of impacts naturally involves friction. One of the main 

challenges is the multiscale modeling of hierarchical rough surfaces that emerge 

at the microscale or from biological optimized solutions.45,46 Explicit numerical 

modeling of rough surfaces features a wide range of significant length scales and 

would be prohibitively expensive. Because of this, a central ingredient of a 

multiscale approach becomes homogenization, so that macroscale friction 

coefficients are derived from the solution of a microscale boundary-value problem 

based on the smallest representative volume element (RVE) of the rough profile.47 

Alternatively, isogeometric analysis,48 which exploits Computer Aided Design 

(CAD) splines interpolating functions both as geometry descriptors and element 

basis functions, is especially attractive for the analysis of complex contact 

geometries. This can be exploited in the analysis of armors inspired by the 

bombardier beetle, whose reaction chamber for the production of a defensive fluid 

is enclosed in undulated walls essential for greater energy dissipation and 

structural resistance.46 

Another field in which multiscale FEM simulations are required is the 

modeling of dry adhesion in biological organisms, such as geckos, which is 

optimized using various strategies at different scale levels. Studies have shown 

how contact splitting (i.e., when a single contact is split into many finer ones) is 

used effectively by animals such as geckos and insects to increase the total 

peeling line (i.e. the sum of the width of the contacts)and adhesion force.49,50 This 

is combined at the microscale with tapering of contact units or gradation in 

mechanical properties to increase adhesion efficiency.49,51  

Structures such as the anchorages of spider webs to external structures 

(Figure 2c) exploit hierarchical structure together with nonlinear constitutive 
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material properties to improve resilience and to achieve tunability in 

adhesion/detachment characteristics.52 These mechanisms can be modeled using 

numerical implementations of our multiple peeling theory53 or CZM formulations 

within a FEM-based framework. Such computational studies have revealed how, 

through hierarchical structure, contact splitting and adhesion can be maximized,54 

tunability achieved,55 and microcontacts optimized for improved performance.56 

These results can be of great value in the design of bioinspired micropatterned 

adhesive surfaces.57 

Another topic of interest is the study of the vibrations and wave 

propagation in biological or bioinspired structures, such as in the above 

mentioned Bombardier beetle inspired undulated structure. The role of hierarchy 

in the dynamic behavior of these structures remains largely unexplored to date. 

Studies have highlighted the possibility of enhanced vibration damping through 

branching, including in bioinspired slender structures.58 In the fields of phononic 

crystals and acoustic metamaterials (i.e., periodic structures exhibiting frequency 

bandgaps in which wave propagation is inhibited, or other exotic effects like 

focusing and cloaking), some theoretical investigations of 2D lattices with 

nonself-similar59 or self-similar60,61 hierarchical topologies have been performed. 

Preliminary numerical studies have shown that hierarchy can help create wider 

bandgaps at multiple frequency scales compared to simple periodic structures,62 

and to tune the bandgaps and directionality of phononic crystals.63 

Outlook 

As seen from the discussions in this article, it appears that hierarchical design 

down to the nanoscale, where increased surfaces forces and material toughening 

mechanisms can be exploited, could be the breakthrough solution for a new 

generation of high-performance, multifunctional, and environmentally friendly 

materials. For this purpose, novel multiscale and multiphysics computational 

tools, such as HFBM and HLSM discussed here, need to be further developed, 

bridging traditional methods which otherwise cannot have an overlap scale range 

and enabling engineers and scientists to tailor and optimize structural mechanism 

in multiphase, multiscale, and multifunctional materials. To make this possible, 
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the aim of computational scientists is to broaden the overlap regions in scale/time 

between different simulation techniques, relying on the availability of ever more 

powerful computational resources and, whenever possible, to enable their 

integration within the same computational multiscale framework. 
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Figure Captions 

Figure 1. Multiscale approaches to model hierarchical materials, including the 

region of applicability in spatial and time scales (see e.g. 65) 

Figure 2. Examples of multiscale structure and simulations on the strength and 

toughness of hierarchical biological and bioinspired materials. (a) The mechanical 

behavior of nanoreinforced “bionic” silk64 is modeled using molecular dynamics 

simulations to derive the statistical distribution of material properties for native 

silk proteins mixed with carbon nanotubes or graphene at nanoscale. These 

distributions are then used as inputs in a Hierarchical Fibre Bundle Model,17 

where hierarchical organization is modelled for the twisted strands at various 

hierarchical levels up to the web structure that can be modelled within a FEM 

framework. (b) Modeling of artificial multilayer nanocomposites inspired by 

http://arxiv.org/abs/1504.06751
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nacre by means of a Hierarchical Lattice Spring Model21: results yield material 

constitutive laws that are fed into Finite Element Method (FEM) impact 

simulations43  

Figure 3. Application of the theory of multiple peeling55 and cohesive zone 

model (CZM)54 FEM simulations to the problem of adhesion of spider web 

anchorages: (a) SEM image of spider-web anchorage showing hierarchical 

multiple contact splitting, (b) schematization of hierarchical configuration in a 

multiple peeling simulation of the anchorage described by contact and split angles 

(φ, θ, λ) and thread length (li), subjected to a peeling force F. (c) CZM-based 

FEM models are used to investigate the role of fibril shape, elasticity, and 

multiple splitting in delamination simulations. 
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