In the framework of the European project SAMOFAR, a preliminary uncertainty propagation and quantification is carried out, focusing the attention on the influence of nuclear data uncertainty on some relevant neutronic parameters. Relying on the recently developed nuclear data sampler code SANDY and on the xGPT capabilities implemented in the Monte Carlo code SERPENT-2, the uncertainty contributions to the effective neutron multiplication factor, keff, due to the fissile and breeder nuclides can be quantified using a first-order sandwich rule. In order to verify the consistency of the uncertainty propagation performed with xGPT, the study is also performed with legacy GPT approach, available in SERPENT-2.

NUCLEAR DATA UNCERTAINTY QUANTIFICATION IN MOLTEN SALT REACTORS WITH XGPT / Abrate, Nicolo'; Manuele, Aufiero; Dulla, Sandra; Luca, Fiorito. - ELETTRONICO. - (2019), pp. 2348-2357. (Intervento presentato al convegno International Conference on Mathematics Computational Methods and Reactor Physics (M&C 2019) tenutosi a Portland (USA) nel August 25-29).

NUCLEAR DATA UNCERTAINTY QUANTIFICATION IN MOLTEN SALT REACTORS WITH XGPT

ABRATE, NICOLO';Sandra Dulla;
2019

Abstract

In the framework of the European project SAMOFAR, a preliminary uncertainty propagation and quantification is carried out, focusing the attention on the influence of nuclear data uncertainty on some relevant neutronic parameters. Relying on the recently developed nuclear data sampler code SANDY and on the xGPT capabilities implemented in the Monte Carlo code SERPENT-2, the uncertainty contributions to the effective neutron multiplication factor, keff, due to the fissile and breeder nuclides can be quantified using a first-order sandwich rule. In order to verify the consistency of the uncertainty propagation performed with xGPT, the study is also performed with legacy GPT approach, available in SERPENT-2.
2019
978-0-89448-769-9
File in questo prodotto:
File Dimensione Formato  
CP 79 - MC2019 UQ MSFR.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2771952