In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L^2 -subcritical case, they converge to the bound states of the nonlinear Schr"odinger equation in the nonrelativistic limit.
Nonlinear Dirac equation on graphs with localized nonlinearities: Bound states and nonrelativistic limit / Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 51:2(2019), pp. 1046-1081. [10.1137/18M1211714]
Nonlinear Dirac equation on graphs with localized nonlinearities: Bound states and nonrelativistic limit
Tentarelli Lorenzo
2019
Abstract
In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L^2 -subcritical case, they converge to the bound states of the nonlinear Schr"odinger equation in the nonrelativistic limit.| File | Dimensione | Formato | |
|---|---|---|---|
| Borrelli W., Carlone R. Tentarelli L. - Nonlinear Dirac equation on graphs with localized nonlinearities: bound states and nonrelativistic limit, 2019.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										516.97 kB
									 
										Formato
										Adobe PDF
									 | 516.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| Borrelli_Carlone_Tentarelli_revised.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										431.25 kB
									 
										Formato
										Adobe PDF
									 | 431.25 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2771914
			
		
	
	
	
			      	