In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L^2 -subcritical case, they converge to the bound states of the nonlinear Schr"odinger equation in the nonrelativistic limit.

Nonlinear Dirac equation on graphs with localized nonlinearities: Bound states and nonrelativistic limit / Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 51:2(2019), pp. 1046-1081. [10.1137/18M1211714]

Nonlinear Dirac equation on graphs with localized nonlinearities: Bound states and nonrelativistic limit

Tentarelli Lorenzo
2019

Abstract

In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L^2 -subcritical case, they converge to the bound states of the nonlinear Schr"odinger equation in the nonrelativistic limit.
File in questo prodotto:
File Dimensione Formato  
Borrelli W., Carlone R. Tentarelli L. - Nonlinear Dirac equation on graphs with localized nonlinearities: bound states and nonrelativistic limit, 2019.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 516.97 kB
Formato Adobe PDF
516.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Borrelli_Carlone_Tentarelli_revised.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 431.25 kB
Formato Adobe PDF
431.25 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2771914