Networks can now process data as well as transporting it; it follows that they can support multiple services, each requiring different key performance indicators (KPIs). Because of the former, it is critical to efficiently allocate network and computing resources to provide the required services, and, because of the latter, such decisions must jointly consider all KPIs targeted by a service. Accounting for newly introduced KPIs (e.g., availability and reliability) requires tailored models and solution strategies, and has been conspicuously neglected by existing works, which are instead built around traditional metrics like throughput and latency. We fill this gap by presenting a novel methodology and resource allocation scheme, named OKpi, which enables high-quality selection of radio points of access as well as VNF (Virtual Network Function) placement and data routing, with polynomial computational complexity. OKpi accounts for all relevant KPIs required by each service, and for any available resource from the fog to the cloud. We prove several important properties of OKpi and evaluate its performance in two real-world scenarios, finding it to closely match the optimum.

OKpi: All-KPI Network Slicing Through Efficient Resource Allocation / MARTIN PEREZ, Jorge; Malandrino, F.; Chiasserini, C. F.; Bernardos, C. J.. - ELETTRONICO. - (2020), pp. 804-813. (Intervento presentato al convegno IEEE INFOCOM 2020 tenutosi a Toronto (ON, Canada ) nel 06-09 July 2020) [10.1109/INFOCOM41043.2020.9155263].

OKpi: All-KPI Network Slicing Through Efficient Resource Allocation

MARTIN PEREZ, JORGE;C. F. Chiasserini;
2020

Abstract

Networks can now process data as well as transporting it; it follows that they can support multiple services, each requiring different key performance indicators (KPIs). Because of the former, it is critical to efficiently allocate network and computing resources to provide the required services, and, because of the latter, such decisions must jointly consider all KPIs targeted by a service. Accounting for newly introduced KPIs (e.g., availability and reliability) requires tailored models and solution strategies, and has been conspicuously neglected by existing works, which are instead built around traditional metrics like throughput and latency. We fill this gap by presenting a novel methodology and resource allocation scheme, named OKpi, which enables high-quality selection of radio points of access as well as VNF (Virtual Network Function) placement and data routing, with polynomial computational complexity. OKpi accounts for all relevant KPIs required by each service, and for any available resource from the fog to the cloud. We prove several important properties of OKpi and evaluate its performance in two real-world scenarios, finding it to closely match the optimum.
2020
978-1-7281-6412-0
File in questo prodotto:
File Dimensione Formato  
infocom20_v15.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Chiasserini-OKpi.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2771772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo