Failure management plays a role of capital importance in optical networks to avoid service disruptions and to satisfy customers' service level agreements. Machine learning (ML) promises to revolutionize the (mostly manual and human-driven) approaches in which failure management in optical networks has been traditionally managed, by introducing automated methods for failure prediction, detection, localization, and identification. This tutorial provides a gentle introduction to some ML techniques that have been recently applied in the field of the optical-network failure management. It then introduces a taxonomy to classify failure-management tasks and discusses possible applications of ML for these failure management tasks. Finally, for a reader interested in more implementative details, we provide a step-by-step description of how to solve a representative example of a practical failure-management task.
A Tutorial on Machine Learning for Failure Management in Optical Networks / Musumeci, F.; Rottondi, C.; Corani, G.; Shahkarami, S.; Cugini, F.; Tornatore, M.. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - ELETTRONICO. - 37:16(2019), pp. 4125-4139. [10.1109/JLT.2019.2922586]
A Tutorial on Machine Learning for Failure Management in Optical Networks
Rottondi C.;
2019
Abstract
Failure management plays a role of capital importance in optical networks to avoid service disruptions and to satisfy customers' service level agreements. Machine learning (ML) promises to revolutionize the (mostly manual and human-driven) approaches in which failure management in optical networks has been traditionally managed, by introducing automated methods for failure prediction, detection, localization, and identification. This tutorial provides a gentle introduction to some ML techniques that have been recently applied in the field of the optical-network failure management. It then introduces a taxonomy to classify failure-management tasks and discusses possible applications of ML for these failure management tasks. Finally, for a reader interested in more implementative details, we provide a step-by-step description of how to solve a representative example of a practical failure-management task.File | Dimensione | Formato | |
---|---|---|---|
A_Tutorial_on_Machine_Learning_for_Failure_Management_in_Optical_Networks.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
fault management.pdf
accesso riservato
Descrizione: articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2768632
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo