
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Tutorial on Machine Learning for Failure Management in Optical Networks / Musumeci, F.; Rottondi, C.; Corani, G.;
Shahkarami, S.; Cugini, F.; Tornatore, M.. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. -
ELETTRONICO. - 37:16(2019), pp. 4125-4139. [10.1109/JLT.2019.2922586]

Original

A Tutorial on Machine Learning for Failure Management in Optical Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JLT.2019.2922586

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2768632 since: 2019-11-25T15:26:17Z

Institute of Electrical and Electronics Engineers Inc.

1

A Tutorial on Machine Learning for Failure
Management in Optical Networks

Francesco Musumeci�, Cristina Rottondi∗, Giorgio Corani∗, Shahin Shahkarami�, Filippo Cugini†, and
Massimo Tornatore�

� Politecnico di Milano, Italy, ∗Dalle Molle Institute for Artificial Intelligence (IDSIA)
†Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT)

Abstract—Failure management plays a role of capital impor-
tance in optical networks to avoid service disruptions and to
satisfy customers’ service level agreements. Machine Learning
(ML) promises to revolutionize the (mostly manual and human-
driven) approaches in which failure management in optical
networks has been traditionally managed, by introducing au-
tomated methods for failure prediction, detection, localization
and identification. This tutorial provides a gentle introduction
to some ML techniques that have been recently applied in the
field of optical-network failure management. It then introduces
a taxonomy to classify failure-management tasks and discusses
possible applications of ML for these failure management tasks.
Finally, for a reader interested in more implementative details, we
provide a step-by-step description of how to solve a representative
example of a practical failure-management task.

Index Terms—Machine Learning; Failure Management.

I. INTRODUCTION

The importance of failure management in Optical Networks
(ONs) is superior to any other network domain, as failures
in ONs can induce service interruption to thousands, if not
millions, of users. Consider, e.g., the case of the fiber cuts in
Mediterranean Sea in 2008 that caused loss of 70% of Egypts
connection to outside world and more than 50% of Indias
connectivity on the westbound route [1]. Even in much less
disruptive scenarios, the ability of an ON operator to quickly
recover a failure is crucial to meet Service Level Agreements
(SLAs) to its customers.

Despite its importance, ON Failure Management (ONFM)
still often requires complex and time-consuming human in-
tervention, and increased automation of failure recovery is a
fundamental element in operators’ roadmaps for the years to
come. A promising direction moves towards the utilization
of advanced statistical/mathematical instruments of Machine
Learning (ML) to automate the ONFM tasks.

The application of ML in ONFM is challenging for several
reasons: i) the quantity of data that can be monitored in
modern ONs is enormous, and scalable “analytics” techniques
must be considered [2], [3]; ii) several kinds of failures
(not only fiber cuts, but also equipment malfunctioning and
misconfiguration, network ageing, etc.) can affect an ON
connection (lightpath); iii) failure management in ONs tends
to be more challenging than in other domains (e.g., at IP-level)
as ONFM is inherently cross-layer, i.e., it must jointly consider
physical-layer and network-layer aspects. To deal with this
multifaceted problem, effective ONFM shall be constituted

by several sequential tasks, in each of which ML can play
an important role towards automation. To provide a complete
introduction to the topic, in this tutorial:

• we motivate the usage of ML in ONFM and provide a
gentle introduction to the main ML principles and cat-
egories of ML techniques, focusing on those algorithms
that have been already used in previous works,

• we categorize the various phases of ONFM as opti-
cal performance monitoring, failure prediction and early
detection, failure detection, failure localization, failure
identification and failure magnitude estimation,

• for each of category, we provide a description and some
examples, and we discuss which ML methodologies can
be applied for solving them,

• we finally provide a step-by-step description of how
to practically solve a representative ONFM procedure,
breaking down the various steps (collection and prepara-
tion of data, algorithm design, performance analysis).

While surveys summarizing existing proposals for ML ap-
plications in ONs have recently appeared [4], [5], this paper
adopts a more tutorial style and is intended to offer a specific
introduction to the application of ML methodologies for failure
management. We also refer the readers to other two recent
tutorials (Refs. [6] and [7]) that comprehensively cover ML
applications in the field of optical networking and optical
communications, respectively, but do not provide the same
focus on failure management.

The paper is structured as follows. Section II elaborates on
the main motivations for the application of ML in ONFM.
Section III provides basic notions on the most-promising ML
algorithms for ONFM. Section IV presents our taxonomy for
ONFM tasks and discusses, for each task, some proposed
ML solution. In Section V we describe, step-by-step, how a
comprehensive ML-based solution, covering the task described
in Section IV, can be structured. Finally, section VI discusses
some future directions and current standardization activities.

II. MOTIVATION

A. Why ML?

Why ML, a very well-investigated methodological area (its
first applications date back to the 60s), has been attracting
attention for ONFM only in recent years? While the answer
in not necessarily purely technical, we can identify some
recent technological trends in ONs that are paving the way

2

(a) supervised learning for fault identification

(b) unsupervised learning for fault detection and localization

Fig. 1: Supervised vs. unsupervised learning in ONFM

towards effective ML applications:
i) Modern optical equipment (transceivers, reconfigurable
optical add-drop multiplexers, amplifiers) are now installed
with built-in monitoring capabilities [8], and they are capable
to generate a large amount of data, which can be leveraged
to automate ONFM using ML.
ii) The large amount of data collected through such
monitors can now be collected and elaborated in (at least
logically) centralized locations thanks to new advanced
control/management solutions, as network telemetry, SDN [9]
and/or orchestration frameworks [10].
iii) Network intelligence (computing capabilities) can now
be placed virtually everywhere (e.g., leveraging Network
Function Virtualization and/or Mobile Edge Computing).

B. How does ML work?

ML algorithms aim at extracting knowledge from data,
based on some characterizing inputs, often referred to as
attributes or features. Depending on the available data and
on the objective of the model to be developed, ML techniques
can be classified at high level in the following categories:

• Supervised ML algorithms are given as input labelled
data, i.e., there is a set of historical training data sam-

ples containing both the input values (features) and the
corresponding output, namely the labels. Such labels
can be either numerical values in a continuous range or
discrete/categorical values. In these two cases, supervised
learning takes the form of a regression or classification
problem, respectively. Consider e.g., the case in Fig. 1a,
where the objective is to identify the nature of a fault
based on a series of Bit Error Rate (BER) measurements
collected at the receiving nodes of various lightpaths
during past fault events. Each ligthpath is characterized
by a set of features including route, modulation format,
wavelength used for transmission and observed BER
trend. The ML algorithm learns how to associate such
features to the correct failure cause (e.g., an amplifier
malfunctioning or a fiber bending).

• In unsupervised ML algorithms, data is not labelled.
Now, given the available/collected data, the objective is
to identify if there are useful similarities among data (this
is usually referred as clustering) or if there are notable
exceptions in the data set (this is usually referred to as
“anomaly detection”). An intuitive application is shown in
Fig.1b, where the objective of applying ML is to detect
a failure based on historical BER measurements. After
collecting enough data representing faulty and faultless
lightpaths, the algorithm learns to discriminate where a
fault is occurring (in this case on the path A-B-C-D).
After detection, failure localization can also be performed
by correlating the faulty and faultless routes: since paths
A-B-C and A-D-C are faultless, the only possible location
of the failure is on link B-D.

• Semi-supervised algorithms are hybrid of the previous
two categories. These algorithms lend themselves to
solve problems where only few data points are labelled
and most of them are unlabelled (consider, those cases
when labelled data are scarce or expensive, e.g., when
labelled data require ad-hoc probing). Their application
is particularly promising in the field of ONFM, as will
be discussed later.

• Reinforcement learning (RL) is another area of machine
learning in which an agent learns how to optimally behave
(i.e., how to maximize the reward obtained over a certain
time horizon) by interacting with the environment, receiv-
ing a feedback after each action and updating accordingly
its knowledge. Yet, RL is not covered in this tutorial.

In particular, in the case of supervised learning (see the first
row of Fig. 2), the training phase includes the following steps:

• Raw training data are preprocessed to extract and select
features containing useful information for the regres-
sion/classification task, i.e., showing statistical correlation
with the output value/class.

• A suitable learning algorithm is selected. Several learn-
ing algorithms, with different characteristics in terms of
achievable accuracy, scalability and computational effort,
have been proposed. In the next Section, we overview the
most widely-adopted methods in ONFM.

• The chosen algorithm learns the regression/classification
model, i.e., a mapping between the space of features and

3

Fig. 2: ML model construction and test workflow.

the associated outputs.
• To assess and improve the generalization properties of the

algorithm developed at training phase, the ML algorithm
can be applied over one or more validation datasets for
which labels are also known, in order to fine-tune the
algorithm parameters so as to avoid overfitting.

Once the training phase is concluded, the ML algorithm
can be used over a test dataset containing new instances
characterized by the same type of features of the training set
(see second row of Fig. 2) and for which the corresponding
outputs are known (i.e., they represent the ground truth), but
are not used to perform the prediction. In general, in the test
phase, the following steps are performed:

• Data are preprocessed for feature extraction and selection.
• The learned model is applied on the test dataset.
• The outputs provided by the algorithm are elaborated to

be visualized and/or validated, by comparing the output
of the model with the ground truth. To do this assessment,
a wide set of metrics are used [11] (see Sec. III-G).

On the other hand, in the case of unsupervised learning, the
training phase is typically skipped and only the test phase
is performed. However, note that in some cases, e.g., when
performing anomaly-detection, a training phase can be present
also in unsupervised algorithms.

Note that, in general, a ML algorithm is only part of a
complex ONFM procedure, where the outputs of the ML
algorithm (e.g., the output of a regression, a classification or
a clustering algorithm) are exploited to perform further tasks.
As an example, when considering ONFM, a ML algorithm can
be developed and adopted to accurately identify the location
of a failure within the network, i.e., to detect which network
device is affected. After knowing the location of the failure,
i.e., exploiting the output of the ML algorithm, the operator
can take further actions (e.g., perform lightpath re-routing
to bypass the failed network element), exploiting a different
approach, not relying on ML (e.g., select the new path based
on a precomputed list of alternative paths, or calculate the new
path via other routing algorithms such as Dijkstra).

In summary, ML algorithms can become useful ONFM tools
whenever an unknown relation between a set of input features
(e.g., a set of alarms) and their corresponding output (e.g., if
a certain element of the network must be substituted before it
fails) must be identified. In the next section, we will outline
the main ML algorithms used in ONFM.

III. BACKGROUND ON ML TECHNIQUES FOR FAILURE
MANAGEMENT

This section provides a high-level introduction to some ML
techniques adopted in ONFM. We assume the reader to be
already familiar with basic concepts such as decision trees,
decision boundaries, and linear models for regression and
classification. A gentle introduction to these topics is given
in [12]. We also recommend the website [13], which provides
tutorials on the most important ML algorithms.

A. Bagging and Random Forests

Bagging combines the predictions of different models into
a single decision. In case of classification, it takes a vote:
the prediction is the class predicted by most models. In
the case of regression, the prediction is the average of the
predictions of the different models. Bagging creates different
models by training them on training data sets of the same size,
which are obtained by modifying the original training data. In
particular, some instances are randomly deleted while some
others are randomly replicated; this resampling procedure is
called bootstrap. Bagging creates via bootstrap B different
training sets, with B being typically between 20 and 100.
It then learns a different decision tree on each training set.
Bagging is generally more accurate than a single decision tree.
As we have seen, bagging generates an ensemble of classifiers
by randomizing the original training data.

Differently from bagging, in Random forest (RF) the di-
versity among the decision trees is increased by randomizing
the feature choice at each node. In particular, the generation
(“induction”) of decision trees requires selecting the best
attribute to split on at each node; it is randomized by first
choosing a random subset of attributes and then selecting the
best among them. The RF algorithm usually achieves better
accuracy than bagging, both in regression and in classification.
An empirical comparison of different implementations of RF,
with recommendations about default settings, is given by [14].
See [11, Chap.15] for a more detailed discussion of RF. In
ONFM, RFs are applied for classification or regression tasks
on time series constituted by samples of the monitored network
parameters (e.g., BER, received power, etc.). Classification
algorithms can be adopted, e.g., to distinguish between dif-
ferent root causes of failures occurring in optical networks
(failure identification). Instead, regression might be used to
predict the future values of an observed network parameter
based on a historical trend, so as to possibly raise alarms if
the predicted value falls above/below given thresholds (failure
prediction/early detection).

B. Bayesian Networks

A Bayesian Network (BN) is a compact representation
of the joint distribution of multiple discrete variables. As-
sume the involved discrete variables to be X , Y and Z;
for simplicity, assume that each variable has cardinality k.
The joint distribution P (X,Y, Z) assigns a probability to
each possible combination of values of X , Y and Z; thus
it requires storing k3 values. The size of an explicit rep-
resentation of the joint distribution increases exponentially

4

Fig. 3: Example of a feed-forward NN with one hidden layer.

with the number of variables, and it is generally infeasible in
real-world problems. Yet a BN efficiently represents the joint
distribution of even thousands of variables by exploiting the
conditional independences that exist among variables. If X and
Y are independent given Z (i.e., X and Y are conditionally
independent), then the joint distribution can be factorized as
P (X,Y, Z) = P (Z)P (X|Z)P (Y |Z), which requires storing
only k+2k2 values. By exploiting conditional independences,
a BN model sharply decreases the number of values that is
needed to represent the joint distribution. Such independences
can be either discovered from data or suggested from experts.
The independences are then encoded into a directed acyclic
graph. As BNs are typically learned on discrete data, they are
typically adopted in classification tasks.

Once the network is learned, we can use it for making
predictions, for instance computing the posterior probability
for the remaining unobserved variables. This task is called
inference. The most recent advances [15] allow learning and
performing inference with Bayesian networks also in domains
containing thousands of variables. See [16] for a book focused
on modeling and inference with Bayesian networks; see [17]
for a book which covers also other types of probabilistic
graphical models. In the context of ONFM, BNs are applied
for failure localization and root cause identification purposes,
as they can capture correlations among thousands of interde-
pendent networks components.

C. Artificial Neural Networks (ANN)

ANNs are a powerful tool for estimating unknown relations
between features and outputs. An ANN is constituted by
connected units (neurons), that are organized into layers (Fig.
3). Each neuron receives a set of values, one from each neuron
of the previous layer. It computes a weighted sum of such
values and it applies a non-linear transformation (sigmoid,
Rectified linear unit (Relu), tanh, etc. [11]); the output of
this function is then passed to the neurons of the next layer.
Given a large enough number of neurons, the ANN model
can approximate any function with arbitrary precision, thus
constituting a universal approximator.

The estimation of the weights between the layers of an ANN
is performed through the back-propagation algorithm. Finding
the optimal architecture of the network (e.g., deciding how
many neurons to place in each layer) has to be done via trial-
and-error, paying attention to avoid overfitting (which implies
poor predictions on instances which have are not present in

Fig. 4: The optimal hyperplane in a problem with two linearly
separable classes. The margin of the optimal hyperplane is
denoted by ρ. Picture taken from [21].

the training set). See [18, Chap.5] for a detailed discussion of
training ANNs. Similarly to RF, ANN are mainly applied for
failure prediction and identification in optical networks.

When ANNs are characterized by multiple hidden layers,
they are referred to as Multi-Layer Perceptron (MLP). More-
over, Deep Neural Networks (DNNs) constitute a particular
form of MLP, where a high number of hidden layers are
used. In general, adopting several hidden layers as happens
in DNNs, increases the flexibility of the model, i.e., with
DNNs more accurate models of complex input/output relations
can be obtained. In simpler “shallow” ANNs, a hand-designed
selection of input features is typically performed, so an accu-
rate knowledge of the problem to be solved is required from
a human expert. On the contrary, leveraging their multiple-
hidden-layer hierarchy, DNNs enables an automatic learning of
the importance of each input feature onto the output variables,
thus simplifying the process of features selection [19].

For these reasons, DNNs excel in pattern recognition tasks
[20], such as the extraction of features from images, the recog-
nition of handwritten character recognition, the processing of
natural language. In the context of OFNM, the advantage
of deep ANN is that they can be directly fed with raw
measurements acquired from optical monitors, without need
of feature extraction and selection procedures.

D. Support Vector Machines

Support vector machine (SVM) is a kernel methods [22].
Consider a bunch of points being classified into two classes by
a single straight line as shown in Fig. 4. In this case, we can
say that the two classes are separable. In an n-dimensional
space, the optimal hyperplane is the one that represents the
largest separation (margin) between the two classes. The
instances that are closest to the maximum-margin hyperplane
are called support vectors. SVMs identify such maximum-
margin hyperplane and then use it as decision boundary.
SVMs extend [12, Chap.7.2] the linear models (e.g., linear
and logistic regression) as they learn the decision boundary in
a high-dimensional space derived from the problem features.

5

A picture

Logistic
Regression

Linear
Regression

Kernel
Regression

Bayesian
Linear

Regression

GP
Classification

Bayesian
Logistic

Regression

Kernel
Classification

GP
Regression

Classification

Bayesian
Kernel

Fig. 5: Relations between various regression and classification
methods; picture taken from [26].

Note that, while data might be not separable in the original
low-dimensional space of the attributes, they often become
separable in an induced high-dimensional space. The function
used to map an observation of the original attributes into a
higher-dimensional space is called kernel function. Different
kernel functions can be adopted with SVMs, such as, e.g.,
linear, polynomial or radial basis function kernels [11]. SVMs
tend to be slower than other algorithms, but they often produce
accurate classifiers. Like RFs and ANNs, SVMs are mainly
applied in failure prediction and root cause identification.

E. Gaussian Processes

The Gaussian process (GP) is a state-of-the-art approach
for regression and classification; it can be seen as a Bayesian
kernel method (Fig.5). A comprehensive book about GPs is
[23] while many tutorials can be found in [24]. The optimiza-
tion problems required for training SVMs and GPs are similar
[23, Chap.6]; yet GP is a fully probabilistic model, hence
its predictions are naturally accompanied by an assessment
of their uncertainty. An interesting link can be drawn also
with ANNs, as it has been shown that certain ANNs with
one hidden layer are equivalent to a Gaussian process (but
they lack the uncertainty assessment of the GP) [23, Chap.
7]. Another important advantage of the GP is that it can
be trained without overfitting also on small data sets, unlike
neural networks. On the other hand, the training procedure
becomes heavy on very large data sets as its computational
complexity increases cubically with the number of instances
(sparse GPs algorithms have been developed recently to deal
efficiently with big data [25]).

Given the probabilistic characterization of their output, GPs
are particularly useful in ONFM whenever an assessment on
the reliability of a classification/regression is required. As GPs
return the probability that the instance belongs to one class,

depending on such outcome, different actions could then be
triggered: for example, if the probability associated to class
yes is 99%, traffic rerouting would be applied, whereas if the
probability is 51%, it could be better to wait for additional
measurements before rerouting.

F. Network Kriging

Network Kriging (NK) is a mathematical framework that
aims at individuating correlations among linear parameters. It
was initially proposed in [27] to evaluate performance metrics
of transmission paths spanning multiple links of a given
network topology: NK considers path level measurements
of a given performance metric, which is assumed to be a
linear function of the values of the same metric measured
along each link composing the path. As path monitoring
in ONFM requires expensive equipment, NK is aimed at
identifying a subset of deployed paths to be monitored: the
choice of the monitored lighpaths is performed in such a
way that deduction of path-level metrics of the non-monitored
lightpaths is possible, based on the measurements collected on
the monitored ones.

This technique finds direct application in ONFM, since
optical monitors are typically placed at receiver nodes and
thus provide path-level metrics, whereas link-level metrics
(which are of more interest for, e.g., failure localization) can
be directly obtained only at the price of installing additional
monitoring devices at intermediate nodes. However, kriging
works only under assumption that a linear relationship holds
between link-level and path-level metrics. Such assumption
typically does not hold for BER and Q-factor.

G. Cross-validation and statistical analysis of the results

The classical method for estimating the accuracy of a ML
algorithm is k-folds cross-validation (CV) [12, Chap. 5.4].
First, the data are split into k non-overlapping partitions
(folds). At the i-th iteration, (k-1) folds are joined, forming
the training set Di

tr; the remaining fold constitutes instead the
test set Di

te. The classifier is learned on Di
tr and its accuracy

is assessed on Di
te. Such training / test procedure is repeated

several times, until each fold has been used once as test
set. Sometimes, Leave One Out Cross Validation (LOOCV)
is adopted. It corresponds to n-fold cross-validation, where
n is the number of instances in the dataset. Each instance in
turn is left out, and the classifier is trained on all the remaining
instances. See [12, Chap 5.4] for a more detailed discussion
of the statistical properties of LOOCV.

The simplest measure of the quality of a classifiers is the
accuracy, i.e., the proportion of instances which are correctly
classified. Using cross-validation, the accuracy that will be
achieved on future unseen data is estimated by averaging the
accuracies obtained on the different test sets.

However, accuracy assumes that all errors are equally bad,
while usually different types of error have different costs. For
simplicity, assume the classification problem to be character-
ized by two classes, the positive and the negative one. Assume
the positive class to be the rarer outcome; for example the

6

failure in an ON. The negative class is instead the common
outcome, hence the regular functioning of the network.

The most important goal is retrieve all the positive instances,
i.e., all the failures; to this end we are willing to accept
that some negative instances are labeled as positive, hence
triggering some false alarms. A false positive (predicting a
failure as regular) is hence a more severe error than a false
negative (predicting a regular case to be a failure). In problems
of this type, recall and precision [12, Chap. 5.7] are more
relevant metrics than accuracy:

recall =
number of positive cases predicted as positive

total number of positive cases

precision =
number of positive cases predicted as positive

number of positive predictions

Precision and recall are two contrasting objectives and dif-
ferent algorithms give different trade-offs on these measures.
The F-score (or F-measure) can be used to characterize the
performance with a single measure:

F-score =
2 · recall · precision

recall + precision

Sometimes it is necessary to choose between two or more
algorithms, given their cross-validation results. Statistical anal-
ysis of the cross-validation results is typically carried out
through hypothesis testing. This procedure allows to ascertain
whether the difference of performance between two algorithms
can be due to random fluctuations, or if instead the difference
between algorithms is statistically significant. See [28] for
a discussion of the statistical tests used to compare cross-
validated classifiers; see instead [29] for state-of-art Bayesian
approaches to analyze cross-validation results.

IV. A TAXONOMY OF FAILURE MANAGEMENT IN
OPTICAL NETWORKS

As depicted in Fig. 6, ONFM involves a variety of tasks that
can be broadly categorized into 1) Proactive approaches and
2) Reactive approaches. At a high level, proactive approaches
aim at prevention (i.e., avoidance) of service disruption, by
anticipating failure occurrence, whereas reactive approaches
respond to a failure after or during its occurrence, by quickly
activating recovery procedures to repair or substitute the failed
equipment in the shortest possible time.

Failure prevention is typically implemented by continuously
monitoring transmission-quality parameters, such as BER,
Optical Signal to Noise Ratio (OSNR), etc. This way, trans-
mission parameters such as, e.g., modulation format, trans-
mitted power, etc., can be adaptively set to meet the desired
quality of transmission. However, reconfiguring transmission
parameters is not always sufficient to avoid failures, hence it
is still important to be able to predict failure occurrences and
implement proper countermeasures. For example, service can
be maintained by pre-allocating multiple alternative ligthpaths
between a given node pair, such that, in case of a predicted
failure on the primary lightpath, actual downtime can be
avoided by preventively rerouting traffic on a backup lightpath
before any service disruption. Depending on the resiliency

requirements to be achieved, different protection approaches
can be adopted, e.g., dedicated and shared protection either at
path or link level [30], [31].

On the other hand, in failure recovery information retrieved
by network monitors and/or alarms (e.g., which equipment
has failed, etc.) can be leveraged to quickly perform lightpath
restoration. Lightpath restoration is usually implemented by
means of a dynamic discovery of alternative routes [32], al-
though preplanned schemes (e.g., following a static association
between primary and backup paths) can be also followed.

In the following, we describe the various ONFM procedures,
and overview some of the existing work addressing ONFM
by means of ML algorithms. A summary of this overview is
provided in Table I, where we map some existing work with
the adopted ML algorithms, as described in Sec. III with the
ONFM tasks described in the following subsections.

Note that the interest in automation of ONFM has started
several years ago, and even standardizations, in the early
2000s, had been issued to define automatic procedures, e.g.,
based on events-correlation [33], which can partially replace
human intervention in failure management. However, tradi-
tional automated approaches are based on static and often
simplistic rules, not suitable for modern optical networks,
which are characterized by high dynamics and a large amount
of diverse network management parameters. In this view,
ML is a promising technique to dynamically adapt failure
management procedures to the progressively changing network
conditions, thanks to its ability of automatically learning from
the observed network data.

A. Optical Performance Monitoring (OPM)

During a lightpath’s lifetime, various transmission-
performance parameters are constantly controlled by
dedicated monitors installed at optical receivers (especially in
coherent receivers [57]) or in other strategic points (e.g., in
regenerators or intermediate nodes traversed by a lightpath).
Typically monitored parameters are, e.g., pre-Forward Error
Correction BER (preFEC-BER), OSNR, Polarization Mode
Dispersion (PMD), Polarization-dependent loss (PDL),
State of Polarization (SOP) in the Stokes space, Chromatic
Dispersion (CD) and statistics extracted from the eye diagram.
Degradation in one or more of such performance indicators
may lead to a failure, unless proper lightpath adjustment is
triggered to restore signal quality without service disruption.
For example, whenever OPM results in the observation of
signal quality degradation, ON operators may adjust some
optical parameters at the transmission side (such as, e.g.,
modulation format, launch power, etc.) or even along the
lightpath route (e.g., by activating dispersion compensator
modules) to prevent lightpath failure.

Current big-data-analysis techniques enable real-time col-
lection, processing and storage of enormous volumes of
ONFM data, as demonstrated in the field trial in [36]. On top
of this, ML offers powerful tools to perform OPM thanks to the
capability of automatically learning complex mapping between
samples or features extracted from the received symbols and
channel parameters. The most widely used ML tools for OPM

7

Optical Performance
Monitoring

Failure
Detection

Failure
Localization

Failure Magnitude
Estimation

Failure Prediction
and Early-Detection

Failure Prevention Failure Recovery

Failure
Identification

Optical Network
Failure Management

Proactive
approaches

Reactive
approaches

Fig. 6: Taxonomy of Optical Network Failure Management.

TABLE I: Different use cases in ONFM and their characteristics.

Algorithm Task Description Ref.

Random Forests Detection BER anomaly detection [34]
Identification equiment failure type identification [35]

Artificial Neural Networks Monitoring OSNR monitoring [36]–[38]
Monitoring eye diagram monitoring [39]–[44]
Monitoring phase portrait monitoring [45]
Prediction/Identification equipment failure prediction [46], [47]
Detection/Identification BER anomaly detection and identification [34]

Support Vector Machines Prediction equipment failure prediction [48]
Detection BER anomaly detection [34]
Localization/Identification filter failure identification and localization [35]

Gaussian Processes Monitoring OSNR monitoring [49]
Localization/Identification link failure identification and localization [50]

Bayesian Networks Localization/Identification localization and identification of tight filter-
ing anc inter-channel interference

[51]

Identification failure diagnosis [52]–[55]
Network Kriging Localization link failure localization [56]

are ANNs, which can be fed either with the statistical features
of monitored data, or directly with the raw monitored data. Ex-
amples of features are Q-factor, closure, variance, root-mean-
square jitter and crossing amplitude, extracted from power eye
diagrams [39]–[42], [58], [59] and phase portraits [45], asyn-
chronous constellation diagrams including transitions between
symbols [39], or histograms of the asynchronously sampled
signal amplitudes [41], [42]. When directly fed with raw
monitored data, ANNs require complex architectures with a
high number of neurons and hidden layers and a massive
amount of training data to enable automatic extraction of
signal quality indicators, such as PMD, PDL, CD, etc. [37],
[38], whereas using pre-computed input features allows for
the adoption of simpler ANN structures, which can be trained
with smaller datasets.

Alternative learning approaches based on Gaussian pro-
cesses have also been proposed [49], which show reduced
complexity with respect to ANNs, increased robustness against
noisy inputs and easier integration within control plane.

B. Failure Prediction and Early-Detection

In some cases, signal quality cannot be simply restored
by adjusting transmission parameters as seen in the previous
subsection, as signal may keep degrading until a failure occurs.
This gradual signal degradation is often referred to as soft-

failure, as opposed to hard-failures, where signal is totally
disrupted due to unpredictable events (e.g., a sudden fiber cut).
In such cases, prompt detection of soft-failures before a critical
threshold is violated is essential as it would allow the operator
to gain precious time to devise effective countermeasures. As
an example of the application of such proactive approach, the
reader is referred to [60], where the authors propose a cloud
service restoration strategy which exploits forecasts of link
failures in an optical cloud infrastructure.

Several ML algorithms for anomaly detection can be applied
directly in the time series of monitored parameters (see Fig.
7) even when their values are still within tolerable ranges.
In Fig. 7 we report a simplified graphical representation
of the time series of different types of failures. Note that
only the “gradual drift” represents a predictable soft-failure,
corresponding to a gradual pre-FEC BER degradation due
slow filter misalignment. Conversely, both “signal overlap”
and “cyclic drift” result in a more sudden degradation of pre-
FEC BER, hence predicting such failures is more challenging.

Threshold-based approaches for early-failure detection have
been proposed to detect fiber deterioration before the occur-
rence of a break [62] or to identify anomalous BER trends
[61], [63], [64]. In the former scenario, the fiber SOP rotation
speed in the Stokes coordinates is monitored and compared
to a threshold. If such threshold is exceeded, pre-trigger

8

Fig. 7: Examples of anomalous pre-FEC BER and received
power patterns, depending on different fault types [61].

and post-trigger samples are provided to a ML naive-Bayes
classifier, which returns the most likely cause (e.g., fiber
bending, shaking, hit or up-and-down events). In the latter
scenario, a BER anomaly detection algorithm running at every
network node is proposed to identify unexpected BER patterns
indicating potential failures along the monitored lightpath.
The algorithm takes as input statistics about historical and
monitored BER data and returns different types of alerts, de-
pending on whether the current BER exceeds given thresholds
or remains within pre-defined boundaries. In [48], statistical
features of input/output optical power, laser bias current, laser
temperature offset and environment temperature are used by an
SVM classifier to predict equipment failure. Similarly, optical
power levels, amplifier gain, shelf temperature, current draw
and internal optical power are used in [46] to forecast failures
using statistical regression and ANNs.

C. Failure Detection
Differently from early-detection, which aims at identifying

an imminent fault before the violation of a certain threshold,
the goal of failure detection is to trigger an alert after the
values of the monitored parameters exceed the threshold for a
sustained period of time.

While, traditionally, these alerts were manually issued, in
response to continued growth in network complexity, man-
ual management has been progressively replaced by expert
systems [33], that were leveraging predefined sets of if-then
rules, that could be integrated in the control plane. However,
in modern optical networks, failure detection methods based
on predefined fixed thresholds and/or if-then rules might still
be overly simplified, and not be able to adapt to rapid network
dynamics generated, e.g., by on-demand circuit provisioning
or by changes in reconfigurable transmission parameters as
FEC or modulation format. ML promises to more rapidly
evolve and re-adapt failure detection procedures, e.g., by intro-
ducing the capability of detecting unknown failure types (i.e.,
performing “anomaly detection”) and adapting to changing
network condition thanks to periodic algorithm re-training.

In [34] a set of ML algorithms, including Binary SVM,
Random Forest (RF), Multiclass SVM, and ANNs have been

!me	

Pr
e-‐
FE
C	
BE

R	 normal	 anomalous	

!me	
Fig. 8: Qualitative pre-FEC BER behaviour vs time under
normal and anomalous situations.

used to perform failure detection over an optical-transmission
testbed, where pre-FEC BER traces at the receiver are used to
detect anomalies in pre-FEC BER behaviour. Two examples
of the pre-FEC BER behaviour vs time are shown in Fig. 8
for the cases of normal and anomalous (i.e., corresponding to
a failure) BER behaviour. An application of ML algorithms to
failure detection will be illustrated in Sec. V.

D. Failure Localization

After a failure has been detected, the failed element (e.g., the
node or link responsible for the failure) must be localized in
the network. Existing approaches (also based on ML) correlate
alarms coming from different receivers and verify if spatial
correlation can provide useful information. Data for failure
localization can be collected through: i) monitors located at
receivers or intermediate nodes of working lightpaths; ii) mon-
itors acquired through probe lightpaths that do not carry user
traffic and are strategically deployed to help disambiguating
the location of a failure.

Correlation methods not relying on probe lightpaths are used
in [50], [51]. In particular, in [50], ambiguous localizations are
resolved by binary GP classifiers (one for each link suspected
of failure), which compute a failure probability after being
trained with a dataset of past failure incidents. In [56] NK is
adopted to localize failures, assuming that the total number
of alarms (i.e., failures) along every lightpath is known. If
knowledge on number of failures per lightpath does not allow
for unambiguous localization, additional probe lightpaths are
installed to increase the rank of the routing matrix. Probe
lightpaths are also adopted in [35] for failure localization
during the lightpath commissioning testing phase (i.e., prior
to the final deployment): low-cost optical testing channels are
deployed to collect BER measurements from each traversed
node, which are then compared to theoretical BER values. In
case of significant discrepancies, a failure alarm is raised for
the considered span. The same work also proposes a failure
localization algorithm for operative lightpaths, which takes as
input some statistical characteristics of the received optical
spectrum signal.

E. Failure Identification

Even after failure localization, it might still be complex to
understand the exact cause/source of the failure (e.g., inside
a network node, the signal degradation can be due to filter
misalignment, optical amplifier malfunctioning, etc.). Today,

9

failure identification is still a time-expensive process and
consumes lot of precious maintenance human resources [65].

ML classifiers can be used to estimate the most likely
failure cause, after being trained with a comprehensive set
of time series collected in presence of known failures, as
well as during failure-free network operation. For example,
probabilistic graphical models such as BNs can be adopted
to provide compact representations of distributions (which
would be intractably large to be explicitly described) taking
advantage of the sparse dependencies among variables.

In [51], statistics about received BER and power are given as
input to a BN which outputs a probability of failure occurrence
along the ligthpath (thus performing localization, as mentioned
in Section IV-D, and additionally returning the most likely
cause, either tight filtering or inter-channel interference).

BN have also been proposed for failure diagnosis in
GPON/FTTH networks [52], [54], [55]. the ON is represented
using a multilayer approach, where the lower layer represents
the physical network topology (where nodes are ONTs and
ONUs), while the middle layer models local failure propaga-
tion inside a single network component (e.g., a single node).
Finally the upper layer offers a junction tree representation of
the two layers below. Since conditional probabilities in the BN
cannot be easily learned in case of missing measurements, in
[53] the same authors propose an adaptation of the Expecta-
tion Maximization (EM) algorithm for Maximum Likelihood
Estimation from incomplete data.

Alternatively to BNs, frameworks incorporating multiple
ML algorithms have been proposed, where each algorithm
focuses on a specific task (e.g., the identification of a particular
category of failures), as in [34] and [46], [47] where ANNs
are used to perform failure identification in controlled ON
testbeds. In [61], the output of the BER anomaly detection
mentioned in Section IV-B is fed into a probabilistic algorithm
together with historical BER time series, which then returns
the most probable failure type from a predefined set of
possible causes. Similarly, in [35], features extracted from
the spectrum of received signal (including, e.g., power levels
across the central frequency and around other cut-off points
of the spectrum) are used as inputs of a multi-class decision-
tree classifier which outputs a predicted class among three
options: normal, laser drift, or filter failure. Then, a more
refined diagnosis on laser failures is performed using SVMs
to discriminate betwen filter shift or tight filtering, whereas a
linear regressor is adopted to estimate laser drift.

A detailed step-by-step description on failure identification,
as an extended version of the one in [34], will be provided in
Sec. V, where ML classifiers are used to distinguish between
two failure causes, i.e., amplifier gain reduction or filter
misalignment.

F. Failure Magnitude Estimation

After determining a failure location and cause, the esti-
mation of failure magnitude can provide additional informa-
tion to understand failure severity. As an example, based on
the estimation of failure magnitude, a network operator can
decide whether an equipment reconfiguration is sufficient or

equipment reparation, or even substitution, is necessary. Note
that, even though we categorize failure magnitude estimation
and identification as a reactive approached, they can also be
considered as a proactive approached whenever a potential
failure is early-detected (i.e., predicted).

ML classification has been already investigated for failure
magnitude estimation in [35] where, in addition to fault local-
ization and identification algorithms (respectively discussed in
Sections IV-D and IV-E), the authors adopt a linear regression
model to estimate failure magnitude in the case of filter shift,
filter tightening and laser drift failures, using as features var-
ious frequency-amplitude points extracted from optical signal
spectrum at the receiver.

Preliminary results on failure magnitude estimation will be
provided in Sec. V for the optical amplifier malfunctioning
and filter misalignment failures mentioned in Sec. IV-E.

V. A CASE-STUDY FOR ML IN ONFM

The objective of this section is to guide the reader through
some of the steps needed to develop a ML-based ONFM
framework using a case-study example.

Among the tasks described in Sec. IV, we consider 1) Fail-
ure Detection, 2) Failure Identification, and 3) Failure Mag-
nitude Estimation, all performed by analyzing BER traces1

by means of a ML-based multi-stage approach (summarized
in Fig. 9). We describe how we designed our ML-based
approaches (e.g., adopted algorithms, selection of hyper-
parameters, cross-validation methods, etc.), and then show
illustrative numerical results obtained on a controlled testbed.

A. Design of ML-based Modules for Failure Management

Data preprocessing and windows formation: As first oper-
ation, BER data as those in Fig. 8 shall be prepared to be
analyzed by ML algorithms. This procedure is called Data
preprocessing and generically consists of transforming raw
data, e.g., raw information from network monitors, into a more
“tractable” format that can be handled by ML algorithms.
A good practice when performing data preprocessing is to
visualize the collected data, e.g., by plotting the data in
a 2D or 3D space, and to perform outlier removal and/or
features normalization. Note that, in case the problem is
characterized by a N -dimensional features space (N > 3),
data preprocessing can also include dimensionality-reduction,
e.g., performed through Principal Component Analysis (PCA)
[11], which allows to transform the features space and enable
data visualization into a 2D or 3D space.

After data preprocessing, we prepare sets of contiguous
BER windows, i.e., groups of consecutive BER samples,
characterized by two main parameters: i) TBER, i.e., the time
between two consecutive BER observations in the window, and
ii) window size, i.e., its time-duration, W . The idea is that,
analyzing different consecutive BER windows at the receiver,
in case one or more failures are observed, a failure alarm can
be issued by the network operator, and the failure cause and
its magnitude can be estimated. Note that different windows

1In the following we use the term “BER” to refer to “Pre-FEC BER”.

10

may overlap, e.g., if window “a” contains samples from #1 to
#15, window “b” can contain samples #2 to #16.

As shown in Fig. 9, given a BER-window, the objective of
the ML-based framework is to determine:

1) If the window corresponds to a failure (failure de-
tection); as shown in box 1 of Fig. 9, this represents
a binary classification problem, i.e., either the window
corresponds to a failure or not; only in case the window
is classified as corresponding to a failure, it will be given
as input to the next step 2.

2) What is the failure cause (failure identification); when
a failure is detected, the BER window will be classified
by the failure identification module (box 2 in Fig. 9); in
our illustrative numerical analysis, two different failure
causes will be distinguished, i.e., OSNR reduction driven
by undesired excessive attenuation along the path, due
to, e.g., optical amplifier malfunctioning (Low-gain), and
excessive signal filtering, due to, e.g., filter misalign-
ment in a multi-span optical fiber transmission system
(Filtering); therefore, also in this case the ML-module
is a binary classifier.

3) What is the failure magnitude (failure magnitude
estimation); according to the failure cause identified in
step 2, a proper ML-based classifier is triggered, which
analyzes the BER-window and provides the range of the
failure magnitude for Low-gain and Filtering failures,
respectively. In both cases (see boxes 3a and 3b in Fig.
9), the ML modules represent multi-class classifiers; that
is, in case of Low-gain failure, module 3a estimates the
failure magnitude as belonging to class “[1-4] dB”, “[5-
7] dB”, or “[8-10] dB”; on the other hand, for Filtering
failure, module 3b selects one of the following classes
estimates the failure magnitude as belonging to class
“[26-30] GHz”, “[32-36] GHz”, or “[38-46] GHz”.

Note that, given the 3-steps workflow above, a misclassifi-
cation in a given step will induce a misclassification also in
the subsequent steps, however, such cascaded misclassification
errors will be accounted only once when evaluating the overall
classification accuracy.

1) BER-Window Features and Labels: To train the various
ML algorithms, several BER windows are used, each charac-
terized by a feature vector x and an output label y.

The same set of features (i.e., the same feature vector x) is
used for the detection, identification and magnitude estimation
tasks. More specifically, for each BER-window, we consider
the following 16 features (i.e., x = {x1, ..., x16}):

• x1 = min: minimum BER value in the window;
• x2 = max: maximum BER value in the window;
• x3 = mean: mean BER value in the window;
• x4 = std: BER standard deviation in the window;
• x5 = p2p: “peak-to-peak” BER, i.e., p2p = max−min;
• x6 = RMS: BER root mean square in the window;
• x7 ÷ x16: the ten strongest spectral components in the

window, extracted by applying Fourier transform.

On the other hand, each BER-window is characterized by
a vector of labels, i.e., y = {y1, y2, y3}, where each of the

three components in the output vector y is used for only one
specific task, as shown in Fig. 9. Namely,

• for failure detection, a univariate binary label is used for
each window, i.e., y1 ∈ {0; 1}, where y1 = 0 corresponds
to a normal BER-window, whereas y1 = 1 corresponds
to an anomalous BER window;

• for failure identification, again a univariate binary label
is used for each window, i.e., y2 ∈ {0; 1}, where y2 = 0
corresponds to a Low-gain failure, whereas y2 = 1
corresponds to a Filtering failure; note that, for the
failure identification problem, ML training is performed
by considering only anomalous BER-windows;

• for failure magnitude estimation, a multi-class output
label is used for each window, i.e., y3 ∈ {r1; r2; r3},
where y3 = ri, i = 1, 2, 3 indicates the i-th range of Low-
gain (respectively, Filtering) failure magnitude range,
expressed in dB (respectively, GHz); note that we de-
veloped and trained two different ML-based modules for
the Low-gain and Filtering failures, each trained with the
corresponding set of BER windows. Moreover, note that
we evaluate the overall performance of the framework by
considering different ranges of failure magnitude; more
specifically, we consider the cases of “2-ranges” and
“3-ranges”. In the former case, output label for each
window is in the form of y3 ∈ {r1; r2}, while in the
latter case each label can take one out of three possible
values, i.e., y3 ∈ {r1; r2; r3}, as shown in the outputs of
blocks 3a and 3b in Fig. 9. Consequently, as shown in
Fig. 9, in the “3-ranges” scenario, the BER window is
fed into the 3-steps ONFM framework, where the possible
output classes are 7: 1) No-failure, 2) Low-gain-[range1]
dB, 3) Low-gain-[range2] dB, 4) Low-gain-[range3] dB,
5) Filtering-[range1] GHz, 6) Filtering-[range2] GHz or
7) Filtering-[range3] GHz. Similarly, for the “2-ranges”
case, a total of 5 output classes will be available.

In the following we provide more details on the ML
algorithms adopted to perform the three tasks and we answer
to some practical questions as: i) how often should we collect
BER samples to have an accurate BER detection? ii) how
many consecutive anomalous windows should we wait before
issuing a failure alarm? Moreover, for each algorithm, we
study the trade-off between classification accuracy and algo-
rithm complexity, by varying the value of the window time-
duration, W (large W leads to higher accuracy, but also higher
computational time).

2) Failure Detection ML Algorithms: The Failure Detection
module has been developed using one-class SVM classifier.
Other types of ML classification algorithms (Random Forest
(RF), Multiclass SVM, and artificial neural network (ANN))
have also been tested and compared with the one-class SVM,
in terms of accuracy and training phase duration. Note that,
while the one-class SVM is an unsupervised classifier, all the
other approaches are supervised (see Sec. III)2.

2In our experiment, for the one-class SVM case, we use only “normal”
BER data (i.e., BER values not resulting into a failure), whereas for the
supervised cases we use a larger data-set, consisting of “normal” BER data
and all different types of failures.

11

1. Failure Detection
BER-window

corresponds to a
failure?

3a. Failure Magnitude
Estimation (Low-gain)

What is the
attenuation range?

2. Failure Identification
What is the cause of

failure for this window?

time

BE
R

BER Window
W

TBER

Yes

No
3b. Failure Magnitude
Estimation (Filtering)
What is the filtering

range?

Output 1) No-failure
& continue BER monitoring
considering next window

Low-gain

Filtering

[1-4] dB

[5-7] dB

[8-10] dB

[26-30] GHz

[32-36] GHz

[38-46] GHz

(x,y3)

(x,y2)
(x,y1)

Output 2)
Low-gain [range1]

Output 3)
Low-gain [range2]

Output 4)
Low-gain [range3]

Output 5)
Filtering [range1]

Output 6)
Filtering [range2]

Output 7)
Filtering [range3]

Fig. 9: 3-steps Optical Network Failure Management (ONFM) block diagram (assuming “3-ranges” scenario for failure
magnitude estimation).

The one-class SVM has been implemented with a radial
basis function kernel [11], whereas third-degree polynomial
kernel has been used for the multiclass SVM classifier; Gini
impurity [11] has been used as splitting criteria for decision
trees in the RF algorithm; an ANN with single hidden layer,
consisting of 10 hidden neurons with Relu activation function,
has been used. Hyperparameters in all the algorithms, e.g.,
number of hidden layers and nodes in the ANN, number
of decision trees in RF, kernel in the SVMs, etc., have
been selected using cross-validation. Specifically, for each
of the aforementioned algorithms, several models have been
developed, each with a specific hyperparameters settings. The
resulting model is selected as the one providing the best
classification accuracy, evaluated using the LOOCV technique.
Note that, in this paper, the results provided in the following
analyses are obtained adopting one-class SVM for the Failure
Detection phase. The performance comparison between the
various ML algorithm is out of the scope of this paper.

3) Failure Identification ML Algorithm: Failure Identifica-
tion has been implemented using an ANN with two hidden
layers, each with 5 hidden neurons, and with Relu activation
function. Also in this case cross-validation has been used to
fine-tune hyperparameters, i.e., the number of hidden layers
and neurons, and the activation function.

4) Failure Magnitude Estimation ML Algorithm: To esti-
mate failure magnitude we adopted ANNs for both low-gain
and filtering failures (boxes 3a and 3b in Fig. 9, respectively).
For both modules, we used ANNs with a single hidden layer,
considering Relu activation function in the hidden nodes. As
for the number of hidden neurons, cross-validation has been
used to find a proper balance between model accuracy and
training duration, and it depends on the number of output
labels under consideration. Specifically, we consider ANNs
with a number of hidden neurons ranging between 80 and 90
for the “2-ranges” and “3-ranges” scenarios, for both filtering
and low-gain magnitude estimation cases.

TX BV
WSS

RX

80km

E1 E2

Fig. 10: Testbed setup.

B. Results

Testbed setup. To perform our analysis, BER traces have
been obtained over an experimental testbed as shown in Fig.
10. Measurements were performed on an 80 km Ericsson
OTU-4 transmission system employing PM-QPSK modulation
at 100 Gb/s line rate. Signal is transmitted on central frequency
of 192.5 THz (i.e., 1557.36 nm) using 50 GHz spectrum width.
The end-to-end system is constituted by a series of Erbium
Doped Fiber Amplifiers (EDFA) followed by Variable Optical
Attenuators (VOAs). Note that the numerical analysis in this
section is based on a simplified point-to-point testbed and can
only represent a proof of concept for the application of ML
to different ONFM use cases. Considering more complex and
realistic ON scenarios, e.g., based on a ring/mesh physical
topology and a richer set of ligthpaths, would affect the
conclusion of such analysis, e.g., due to the emergence of non-
linear effects on signal propagation of interfering lightpaths.
Further analysis considering more complex topologies and
traffics (and others as, e.g., the selection of most effective
ML algorithms, or the selection of other input features among
the monitored optical parameters, such as the OSNR) are out
of the scope of this paper and are left for future work.

A Bandwidth Variable-Wavelength Selective Switch (BV-
WSS) is configured to introduce narrow filtering or additional
attenuation with the intent to emulate two possible impair-
ments that cause BER degradation, i.e., filter misalignment
and an undesired amplifier-gain reduction. We have formed
our dataset starting from a “normal” (i.e., non-failed) con-
dition, where a frequency slot of 50 GHz (i.e., no narrow

12

0 1 2 3 4 5
60

65

70

75

80

85

90

95

100

Window size [minutes]

A
cc

ur
ac

y
[%

]

Detection
Identification

Mag-Est (Low-gain)
Mag-Est (Filtering)

ONFM

Fig. 11: Classification accuracy vs window size for different
tasks in isolation and for the overall ONFM (“2-ranges”
scenario, TBER = 2 s).

filtering) and a 0 dB attenuation (i.e., no extra attenuation)
are considered. Additional filtering and low-gain failures are
gradually imposed through the BV-WSS, by reducing its
bandpass spectrum from 46 GHz to 26 GHz at steps of 2 GHz
(maintaining a fixed central frequency) and by applying extra
attenuation (i.e., to emulate optical amplifier gain reduction)
between 1 and 10 dB ad fixed steps of 1 dB. Thus, we gather
data representing two different BER-degradation causes as
well as different magnitude of gain reduction and filtering,
over which we could train and test our ML-based modules.

For each combination of the above mentioned filtering and
gain reduction values (i.e., 46-to-26 GHz filtering with 2
GHz-steps, and 1-to-10 dB gain reduction with 1 dB-steps,
respectively) and including also normal BER condition (i.e.,
50 GHz spectrum and 0 dB gain-reduction), we collected BER
samples for one hour with a sampling interval of 2 seconds.
Therefore, our overall dataset consists of 24-hours of BER
samples collected every 2 seconds, totalling an amount of
43200 BER points. Note that, as we consider BER-windows
as training and test data instead of individual BER points, the
number of (x,y) points depends on the considered values of
BER sampling period, TBER, and window time-duration, W .

We first assess the performance of the overall ONFM frame-
work considering the case of “2-ranges” for failure magnitude
estimations. To this end, we compare the performance of the
overall ONFM with that of the “isolated” failure detection,
identification and magnitude estimation modules (i.e., modules
1, 2, 3a and 3b in Fig. 9, respectively).

Performance comparison.
Common metrics to evaluate the performance of ML al-

gorithms are the classification accuracy and the training-phase
duration (that represents the complexity of the ML algorithm).
Here, since the amount of data in the different classes is not
ncessarly balanced, we also use other metrics as, precision,
recall and F-score (see Section III).

Fig. 11 shows the overall accuracy of the whole ONFM
framework, and of each of its components, for different
values of window duration W , in the “2-ranges” scenario. As
expected, accuracy increases with window size in all cases.
As expected, failure detection task is the most efficient as it

0 1 2 3 4 5
60

65

70

75

80

85

90

95

100

Window size [minutes]

A
cc

ur
ac

y
[%

]

Mag-Est (Low-gain)
Mag-Est (Filtering)

ONFM

Fig. 12: Classification accuracy vs window size for different
tasks in isolation and for the overall ONFM (“3-ranges”
scenario, TBER = 2 s).

provides classification accuracy close to 100% with window
size above 2.5 minutes. On the other hand, our analysis
suggests that, to properly perform failure cause identification,
i.e., to distinguish between filter and low-gain failures with
reasonably high accuracy, larger window size is needed, i.e.,
in the order of 5 minutes to reach 90% accuracy. Consider-
ing failure-magnitude estimation, we observe that increasing
window size is more beneficial in the case of filter failures, as
demonstrated by the steeper increase of classification accuracy
for values of W above 1.5 minutes. It is worth noting that the
overall accuracy of ONFM is highly influenced by the poor
performance of the failure identification task, especially when
the window size is below 2.5 minutes.

A similar comparison for the “3-ranges” case is shown
in Fig. 12. Here curves for the isolated failure detection
and failure identification modules are not shown as their
accuracy does not depend on the number of classes used in the
magnitude estimation tasks, therefore curves are equivalent to
the ones observed in Fig. 11. Also in this case we observe high
benefit in increasing window size, especially in the filter fail-
ure magnitude estimation, where around 100% classification
accuracy is reached for window size above 4 minutes.

In Tabs. II and III, for the “2-ranges” scenarios, we show
how the Precision (P), Recall (R) and F -score measures
vary with increasing window size W , in the cases of low-
gain and filtering failure magnitude estimation, respectively. In
both cases the F -score steadily increases with window size,
despite this is not always the case for P and R, meaning
that in any case a good balance between these two metrics
is obtained when increasing W . In particular, P shows a
decrease in the low-gain failure magnitude estimation case for
W = 250 seconds, whereas R always increases for this task.
On the other hand, in the filter failure magnitude estimation
R decreases from 0.97 down to 0.94 for W = 200 seconds,
before increasing again up to 0.98 for W = 300 seconds.
However, the value of P in this case always increases, which
makes the F -score steadily increase also for this task.

Note that this study considers a single-lightpath system, but
other sophisticated optimization can be performed in a more
complex network environment, such as, e.g., the selection of

13

TABLE II: Precision (P), Recall (R) and F -score vs window
size W (Low-gain failure magnitude estimation).

W [seconds] P R F -score

50 0.84 0.84 0.84
100 0.88 0.88 0.88
150 0.9 0.88 0.89
200 0.92 0.90 0.91
250 0.9 0.93 0.91
300 0.92 0.93 0.92

TABLE III: Precision (P), Recall (R) and F -score vs window
size W (Filtering failure magnitude estimation).

W [seconds] P R F -score

50 0.81 0.8 0.8
100 0.85 0.8 0.83
150 0.93 0.97 0.95
200 0.96 0.94 0.95
250 0.98 0.95 0.96
300 0.98 0.98 0.98

monitor placement. If the previous results are confirmed on a
network-wide operation scenario, the practical benefits for op-
erators would be remarkable. To name few, i) this framework
would enable an almost instantaneous troubleshooting (at least
for a certain class of common failures) that can significantly
reduced time to repair (TTR), and ii) early detection can
help eliminate some classes of failure, leading to significant
reduction of service downtime.

VI. FUTURE RESEARCH DIRECTIONS

A. Open questions

The application of ML in ONFM has only recently gained
attention. Several questions remain open regarding the ap-
plicability of ML in operational networks, due to scalability
problems, network conditions changing too rapidly (or too
slowly) to be detected, etc. In this Section, we elaborate on
some future research directions in this field.

a) How to deal with changing network conditions:
The classical offline supervised learning approach (applied in
almost all the studies cited in this paper) should be evolved
to cope with time-evolving network scenarios, e.g., in terms
of traffic variations or ageing of hardware components. To
this aim, semi-supervised and/or unsupervised ML, could be
implemented to gradually acquire knowledge from novel input
data. Then, the impact of periodic re-training of supervised
mechanisms should also be investigated to adapt the ML model
to the current network status. Moreover, in this context, ONFM
would largely benefit if automatic data labeling is applied after
exploiting semi-supervised and/or unsupervised approaches to
identify anomalies in dynamic optical networks. As a matter
of fact, some papers have already appeared tackling this issue.
For example, in [66] the authors concentrate on detecting
anomalies in the signal power levels in lightpaths, due to
malfunctioning in filters, amplifiers, power equalizer, or even
due to jamming attacks. Also in [67] the authors exploit
unsupervised learning to detect jamming attacks, by applying
optical performance monitoring to correlate the behaviour of

physical layer parameters (such as, e.g., chromatic dispersion,
OSNR, BER, etc.) with malicious traffic.

b) How to selectively query the network to obtain useful
monitoring information: In several cases, monitored data is
expensive to be acquired and shall be extracted/queried only
when necessary. Active ML approaches, which can interac-
tively ask to observe training data with specific characteristics,
could be adopted to reduce the size of datasets required to
build an accurate prediction model, thus leading to significant
savings in case the data collection process is costly (e.g., when
probe lightpaths have to be deployed).

c) How to discover relevant patterns in case of large
scale data sets: This point is the logical counterpart of the
previous point. For some monitoring systems, the amount of
generated data is enormous and the techniques employed to
extract useful information shall be extremely scalable (“big
data” analysis). Some scalable approaches for big-data analysis
are in the area of Association Analysis (AA) (e.g., the a-priori
algorithm [68]), and can find hidden relationships in large-
scale data. AA could distil the redundant alert information to
a single or multiple failure scenarios.

d) Once a failure has been detected, can ML also help
making decision on the most appropriate reaction to the fail-
ure?: Consider a ML algorithm performing anomaly detection
on the monitored BER data at an optical receiver. Assume that
the ML algorithm detects an anomalous behavior during a time
window covering the last few seconds. What is the best action
to be triggered? Should the lightpath be immediately rerouted,
or maybe it is sufficient to leverage tunable transceiver to
reduce the transmission baud rate/modulation format? These
decisions are far from trivial and if ML can help in this context
deserves further investigation.

B. Network telemetry: a key enabler for ML in ONs

In this tutorial, we assumed monitored data can be re-
trieved from equipment and elaborated in suitable con-
trol/management logical elements. In practice, research is on-
going to identify the right monitoring and control technologies.

For example, in SDN, two main components are required to
efficiently support ML applications. First, monitoring param-
eters require the definition of common, vendor-neutral YANG
models. Specifically, YANG definitions are required for coun-
ters, power values, protocol stats, up/down events, inventory,
and alarms, originated from data, control, and management
planes. Relevant standardization initiatives and working groups
on YANG modeling are currently active in IETF, OpenCon-
fig [69] and OpenROADM [70]. As of today, YANG models
are moderately mature and preliminarily supported by several
vendors, but they are not yet completely inter-operable, and
this is significantly delaying their deployment in production
networks. Second, a streaming telemetry protocol is required
to efficiently retrieve data directly from devices to the Teleme-
try Collector running ML algorithms [71]. Moreover, telemetry
should enable efficient data encoding, secure communica-
tion, subscription to desired data based on YANG models,
and event-driven streaming activation/deactivation. Traditional
monitoring solutions (e.g., SNMP) are not adequate, since they

14

are designed for legacy implementations, with poor scaling
for high-density platforms, and very limited extensibility. Thus
innovative solutions for efficient telemetry protocols have been
introduced as gRPC and Thrift, proposed by Google and
Facebook, respectively [72], [73]. Telemetry has been recently
introduced in several optical nodes as well as included in
the aforementioned standardization initiatives. For example,
OpenConfig supports the use of either gRPC or Thrift to
stream telemetry data defined according to OpenConfig YANG
data models.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Community under grant agreement no.
761727 Metro-Haul project. Giorgio Corani was supported
from the Swiss NSF grants ns. IZKSZ2–162188. Massimo
Tornatore also acknowledges support from NSF Grant No.
1818972.

REFERENCES

[1] J. Borland, “Analyzing the Internet collapse,” MIT Technology Review,
2008.

[2] S. Marsland, Machine learning: an algorithmic perspective. CRC press,
2015.

[3] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine Learning for Cognitive
Network Management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158–165, 2018.

[4] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini,
and M. Tornatore, “A Survey on Application of Machine Learning
Techniques in Optical Networks,” IEEE Communications Surveys &
Tutorials (submitted for publication), 2018.

[5] J. Mata, I. de Miguel, R. J. Durn, N. Merayo, S. K. Singh,
A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods
in optical networks: A comprehensive survey,” Optical Switching
and Networking, vol. 28, pp. 43 – 57, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S157342771730231X

[6] D. Rafique and L. Velasco, “Machine Learning for Network Automation:
Overview, Architecture, and Applications [Invited Tutorial],” J. Opt.
Commun. Netw., vol. 10, no. 10, pp. D126–D143, Oct. 2018.

[7] F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau, “An optical communica-
tion’s perspective on machine learning and its applications,” Journal of
Lightwave Technology, vol. 37, no. 2, pp. 493–516, Jan 2019.

[8] “Fiber optic transceiver with built-in test,” available at https://
techlinkcenter.org/technologies/fiber-optic-transceiver-bit/.

[9] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein,
and W. Kellerer, “Software Defined Optical Networks (SDONs): A
Comprehensive Survey,” Commun. Surveys Tuts., vol. 18, no. 4, pp.
2738–2786, Oct. 2016. [Online]. Available: https://doi.org/10.1109/
COMST.2016.2586999

[10] [Online]. Available: https://osm.etsi.org/
[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer series in
statistics New York, 2008.

[12] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[13] “The Machine Learning Summer School,” http://mlss.cc/, accessed:
2018-06-06.

[14] A. Bagnall and G. C. Cawley, “On the Use of Default Parameter Settings
in the Empirical Evaluation of Classification Algorithms,” arXiv preprint
arXiv:1703.06777, 2017.

[15] M. Scanagatta, G. Corani, C. de Campos, and M. Zaffalon, “Approxi-
mate structure learning for large Bayesian networks,” Machine Learning,
vol. 107, no. 8-10, pp. 1209–1227, 2018.

[16] A. Darwiche, Modeling and reasoning with Bayesian networks. Cam-
bridge University Press, 2009.

[17] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[18] M. B. Christopher, Pattern Recognition and Machine Learning.
Springer-Verlag New York, 2016.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[20] F. Chollet, Deep learning with python. Manning Publications Co., 2017.
[21] H. Ressom, R. S. Varghese, D. Saha, E. Orvisky, L. Goldman, E. F.

Petricoin, T. P. Conrads, T. D. Veenstra, M. Abdel-Hamid, C. A.
Loffredo et al., “Particle swarm optimization for analysis of mass
spectral serum profiles,” in Proceedings of the 7th annual conference
on Genetic and evolutionary computation. ACM, 2005, pp. 431–438.

[22] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp.
121–167, 1998.

[23] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT Press Cambridge, MA, 2006.

[24] “Gaussian Process Summer Schools,” http://gpss.cc/, accessed: 2018-06-
06.

[25] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big
data,” in Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, 2013, pp. 282–290.

[26] Z. Ghahramani, “A Tutorial on Gaussian Processes (or why I do not use
SVMs),” in mLSS Workshop talk by Zoubin Ghahramani on Gaussian
Processes, 2011.

[27] D. B. Chua, E. D. Kolaczyk, and M. Crovella, “Network kriging,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 12, pp. 2263–
2272, 2006.

[28] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[29] A. Benavoli, G. Corani, J. Demšar, and M. Zaffalon, “Time for a change:
a tutorial for comparing multiple classifiers through Bayesian analysis,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 2653–
2688, 2017.

[30] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks.
Part I-protection,” in INFOCOM’99. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 2. IEEE, 1999, pp. 744–751.

[31] G. Maier, A. Pattavina, S. De Patre, and M. Martinelli, “Optical net-
work survivability: protection techniques in the WDM layer,” Photonic
Network Communications, vol. 4, no. 3-4, pp. 251–269, 2002.

[32] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE
network, vol. 14, no. 6, pp. 16–23, 2000.

[33] T. S. S. International Telecommunication Union, “Transport network
event correlation,” ITU-T Rec. M.2140, Feb. 2000. [Online]. Available:
http://www.itu.int

[34] S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, “Machine-
Learning-Based Soft-Failure Detection and Identification in Optical
Networks,” in Optical Fiber Communication Conference. Optical
Society of America, 2018, pp. M3A–5.

[35] A. Vela, B. Shariati, M. Ruiz, F. Cugini, A. Castro, H. Lu, R. Proietti,
J. Comellas, P. Castoldi, S. Yoo et al., “Soft Failure Localization During
Commissioning Testing and Lightpath Operation,” Journal of Optical
Communications and Networking, vol. 10, no. 1, pp. A27–A36, 2018.

[36] S. Yan, F. N. Khan, A. Mavromatis, D. Gkounis, Q. Fan, F. Ntavou,
K. Nikolovgenis, F. Meng, E. H. Salas, C. Guo et al., “Field trial of
machine-learning-assisted and SDN-based optical network planning with
network-scale monitoring database,” in 43rd European Conference on
Optical Communication (ECOC 2017), 2017.

[37] T. Tanimura, T. Hoshida, J. C. Rasmussen, M. Suzuki, and H. Morikawa,
“OSNR monitoring by deep neural networks trained with asyn-
chronously sampled data,” in OptoElectronics and Communications
Conference (OECC) 2016. IEEE, Oct. 2016, pp. 1–3.

[38] T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, “Data-
analytics-based Optical Performance Monitoring Technique for Optical
Transport Networks,” in Optical Fiber Communications Conference
(OFC) 2018, Mar. 2018.

[39] J. A. Jargon, X. Wu, H. Y. Choi, Y. C. Chung, and A. E. Willner,
“Optical performance monitoring of QPSK data channels by use of
neural networks trained with parameters derived from asynchronous
constellation diagrams,” Optics Express, vol. 18, no. 5, pp. 4931–4938,
Mar. 2010.

[40] X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and A. E. Willner,
“Applications of artificial neural networks in optical performance mon-
itoring,” IEEE/OSA Journal of Lightwave Technology, vol. 27, no. 16,
pp. 3580–3589, June 2009.

[41] F. N. Khan, T. S. R. Shen, Y. Zhou, A. P. T. Lau, and C. Lu, “Optical
performance monitoring using artificial neural networks trained with

15

empirical moments of asynchronously sampled signal amplitudes,” IEEE
Photonics Technology Letters, vol. 24, no. 12, pp. 982–984, June 2012.

[42] T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical
performance monitoring using artificial neural network trained with
asynchronous amplitude histograms,” IEEE Photonics Technology Let-
ters, vol. 22, no. 22, pp. 1665–1667, Nov. 2010.

[43] D. Zibar, L. H. H. de Carvalho, M. Piels, A. Doberstein, J. Diniz,
B. Nebendahl, C. Franciscangelis, J. Estaran, H. Haisch, N. G. Gonzalez
et al., “Application of machine learning techniques for amplitude and
phase noise characterization,” IEEE/OSA Journal of Lightwave Technol-
ogy, vol. 33, no. 7, pp. 1333–1343, 2015.

[44] D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning
techniques in optical communication,” IEEE/OSA Journal of Lightwave
Technology, vol. 34, no. 6, pp. 1442–1452, 2016.

[45] T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and
J. C. Li, “Multi impairment monitoring for optical networks,” IEEE/OSA
Journal of Lightwave Technology, vol. 27, no. 16, pp. 3729–3736, Aug.
2009.

[46] D. Rafique, T. Szyrkowiec, A. Autenrieth, and J.-P. Elbers, “Analytics-
Driven Fault Discovery and Diagnosis for Cognitive Root Cause Anal-
ysis,” in Optical Fiber Communications Conference (OFC) 2018, Mar.
2018.

[47] D. Rafique, T. Szyrkowiec, H. Grießer, A. Autenrieth, and J.-P. Elbers,
“Cognitive Assurance Architecture for Optical Network Fault Manage-
ment,” Journal of Lightwave Technology, vol. 36, no. 7, pp. 1443–1450,
2018.

[48] Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and
Z. Liu, “Failure prediction using machine learning and time series in
optical network,” Optics Express, vol. 25, no. 16, pp. 18 553–18 565,
2017.

[49] F. Meng, S. Yan, K. Nikolovgenis, Y. Ou, R. Wang, Y. Bi, E. Hugues-
Salas, R. Nejabati, and D. Simeonidou, “Field Trial of Gaussian Process
Learning of Function-Agnostic Channel Performance Under Uncer-
tainty,” in Optical Fiber Communications Conference (OFC) 2018, Mar.
2018.

[50] T. Panayiotou, S. P. Chatzis, and G. Ellinas, “Leveraging statistical
machine learning to address failure localization in optical networks,”
IEEE/OSA Journal of Optical Communications and Networking, vol. 10,
no. 3, pp. 162–173, 2018.

[51] M. Ruiz, F. Fresi, A. P. Vela, G. Meloni, N. Sambo, F. Cugini,
L. Poti, L. Velasco, and P. Castoldi, “Service-triggered failure iden-
tification/localization through monitoring of multiple parameters,” in
ECOC 2016; 42nd European Conference on Optical Communication;
Proceedings of. VDE, 2016, pp. 1–3.

[52] S. Tembo, S. Vaton, J.-L. Courant, S. Gosselin, and M. Beuvelot,
“Model-based probabilistic reasoning for self-diagnosis of telecommuni-
cation networks: application to a GPON-FTTH access network,” Journal
of network and systems management, vol. 25, no. 3, pp. 558–590, 2017.

[53] S. R. Tembo, S. Vaton, J.-L. Courant, and S. Gosselin, “A tutorial on
the EM algorithm for Bayesian networks: application to self-diagnosis
of GPON-FTTH networks,” in Wireless Communications and Mobile
Computing Conference (IWCMC), 2016 International. IEEE, 2016,
pp. 369–376.

[54] S. R. Tembo, J.-L. Courant, and S. Vaton, “A 3-layered self-
reconfigurable generic model for self-diagnosis of telecommunication
networks,” in SAI Intelligent Systems Conference (IntelliSys), 2015.
IEEE, 2015, pp. 25–34.

[55] S. Gosselin, J.-L. Courant, S. R. Tembo, and S. Vaton, “Application of
probabilistic modeling and machine learning to the diagnosis of FTTH
GPON networks,” in Optical Network Design and Modeling (ONDM),
2017 International Conference on. IEEE, 2017, pp. 1–3.

[56] K. Christodoulopoulos, N. Sambo, and E. M. Varvarigos, “Exploiting
network kriging for fault localization,” in Optical Fiber Communication
Conference. Optical Society of America, 2016, pp. W1B–5.

[57] K. Christodoulopoulos et al., “ORCHESTRA-Optical performance mon-
itoring enabling flexible networking,” in Transparent Optical Networks
(ICTON), 2015 17th International Conference on. Budapest, Hungary,
2015, pp. 1–4.

[58] J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar,
“Machine Learning Techniques for Optical Performance Monitoring
From Directly Detected PDM-QAM Signals,” IEEE/OSA Journal of
Lightwave Technology, vol. 35, no. 4, pp. 868–875, Feb. 2017.

[59] D. Zibar, J. Thrane, J. Wass, R. Jones, M. Piels, and C. Schaeffer,
“Machine learning techniques applied to system characterization and
equalization,” in Optical Fiber Communications Conference (OFC)
2016, Mar. 2016, pp. 1–3.

[60] C. Natalino, F. Coelho, G. Lacerda, A. Braga, L. Wosinska, and
P. Monti, “a proactive restoration strategy for optical cloud networks
based on failure predictions,” in 2018 20th International Conference on
Transparent Optical Networks (ICTON).

[61] A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni,
L. Potı̀, L. Velasco, and P. Castoldi, “BER degradation detection and
failure identification in elastic optical networks,” Journal of Lightwave
Technology, vol. 35, no. 21, pp. 4595–4604, 2017.

[62] F. Boitier, V. Lemaire, J. Pesic, L. Chavarrı́a, P. Layec, S. Bigo, and
E. Dutisseuil, “Proactive Fiber Damage Detection in Real-time Coherent
Receiver,” in Proc. ECOC, 2017.

[63] A. P. Vela, M. Ruiz, F. Cugini, and L. Velasco, “Combining a machine
learning and optimization for early pre-FEC BER degradation to meet
committed QoS,” in Transparent Optical Networks (ICTON), 2017 19th
International Conference on. IEEE, 2017, pp. 1–4.

[64] A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, L. Velasco,
and P. Castoldi, “Early pre-FEC BER degradation detection to meet
committed QoS,” in Optical Fiber Communication Conference. Optical
Society of America, 2017, pp. W4F–3.

[65] [Online]. Available: http://www.ntt.co.jp/ir/librarye/presentation/2016/
1703e.pdf

[66] X. Chen, B. Li, R. Proietti, Z. Zhu, and S. J. B. Yoo, “Self-Taught
Anomaly Detection With Hybrid Unsupervised/Supervised Machine
Learning in Optical Networks,” IEEE/OSA Journal of Lightwave Tech-
nology, vol. 37, no. 7, pp. 1742–1749, Apr. 2019.

[67] M. S. A. D. G. Marija Furdek, Carlos Natalino, “Experiment-based
detection of service disruption attacks in optical networks using data
analytics and unsupervised learning,” in Proceedings of SPIE 10946,
Metro and Data Center Optical Networks and Short-Reach Links, 2019,
pp. 1–10.

[68] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm sigmod record, vol. 22,
no. 2. ACM, 1993, pp. 207–216.

[69] [Online]. Available: http://www.openconfig.net
[70] [Online]. Available: http://www.openroadm.org
[71] F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Network teleme-

try streaming services in sdn-based disaggregated optical networks,”
Journal of Lightwave Technology, vol. 36, no. 15, pp. 3142–3149, Aug
2018.

[72] [Online]. Available: https://grpc.io
[73] [Online]. Available: https://thrift.apache.org/

