The geomatic survey in the speleological field is one of the main activities that allows for the adding of both a scientific and popular value to cave exploration, and it is of fundamental importance for a detailed knowledge of the hypogean cavity. Today, the available instruments, such as laser scanners and metric cameras, allow us to quickly acquire data and obtain accurate three-dimensional models, but they are still expensive, require a careful planning phase of the survey, as well as some operator experience for their management. This work analyzes the performance of a smartphone device for a close-range photogrammetry approach for the extraction of accurate three-dimensional information of an underground cave. The image datasets that were acquired with a high-end smartphone were processed using the Structure from Motion (SfM)-based approach for dense point cloud generation: different image-matching algorithms implemented in a commercial and an open source software and in a smartphone application were tested. In order to assess the reachable accuracy of the proposed procedure, the achieved results were compared with a reference dense point cloud obtained with a professional camera or a terrestrial laser scanner. The approach has shown a good performance in terms of geometrical accuracies, computational time and applicability.
Smartphone-based photogrammetry for the 3D modeling of a geomorphological structure / Dabove, P.; Grasso, N.; Piras, M.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - STAMPA. - 9:18(2019), pp. 3884-3903. [10.3390/app9183884]
Smartphone-based photogrammetry for the 3D modeling of a geomorphological structure
Dabove P.;Grasso N.;Piras M.
2019
Abstract
The geomatic survey in the speleological field is one of the main activities that allows for the adding of both a scientific and popular value to cave exploration, and it is of fundamental importance for a detailed knowledge of the hypogean cavity. Today, the available instruments, such as laser scanners and metric cameras, allow us to quickly acquire data and obtain accurate three-dimensional models, but they are still expensive, require a careful planning phase of the survey, as well as some operator experience for their management. This work analyzes the performance of a smartphone device for a close-range photogrammetry approach for the extraction of accurate three-dimensional information of an underground cave. The image datasets that were acquired with a high-end smartphone were processed using the Structure from Motion (SfM)-based approach for dense point cloud generation: different image-matching algorithms implemented in a commercial and an open source software and in a smartphone application were tested. In order to assess the reachable accuracy of the proposed procedure, the achieved results were compared with a reference dense point cloud obtained with a professional camera or a terrestrial laser scanner. The approach has shown a good performance in terms of geometrical accuracies, computational time and applicability.File | Dimensione | Formato | |
---|---|---|---|
applsci-09-03884-v2.pdf
accesso aperto
Descrizione: Post-print_article
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
6.61 MB
Formato
Adobe PDF
|
6.61 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2759972
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo