Information Reconciliation (IR) in QKD is a fundamental step in ensuring Alice and Bob share identical set of bits (reconciled key). IR could be done by one-way or two-way channel coding using an auxiliary public authenticated channel to send parities to correct the actual labels so that the sample labels at Alice and Bob match. We assume that communication is performed through an Optical Wireless (OW) or Free Space Optics (FSO) channel, which effects the received signal by a stochastic fading due to jitter in pointing. The effect is that the received samples do not match with the transmitted ones, this is the reason why IR is necessary in such a system. In a previous work, we analyzed the system performance over FSO channel, uncovering the dependence between performance and system parameters such as fading variance or the telescope gain. In this paper we want to study the overall performance and try to obtain optimal values for the parameters that influence the sign error probability.

System parameter optimization for minimization of sign error probability in free space optical CV-QKD / Daneshgaran, Fred; DI STASIO, Francesco; Mondin, Marina; Arnon, Shlomi; Kupferman, Judy. - ELETTRONICO. - (2019). (Intervento presentato al convegno SPIE Optics + Photonics tenutosi a San Diego (California, USA) nel Agosto 2019) [10.1117/12.2535049].

System parameter optimization for minimization of sign error probability in free space optical CV-QKD

Francesco Di Stasio;Marina Mondin;
2019

Abstract

Information Reconciliation (IR) in QKD is a fundamental step in ensuring Alice and Bob share identical set of bits (reconciled key). IR could be done by one-way or two-way channel coding using an auxiliary public authenticated channel to send parities to correct the actual labels so that the sample labels at Alice and Bob match. We assume that communication is performed through an Optical Wireless (OW) or Free Space Optics (FSO) channel, which effects the received signal by a stochastic fading due to jitter in pointing. The effect is that the received samples do not match with the transmitted ones, this is the reason why IR is necessary in such a system. In a previous work, we analyzed the system performance over FSO channel, uncovering the dependence between performance and system parameters such as fading variance or the telescope gain. In this paper we want to study the overall performance and try to obtain optimal values for the parameters that influence the sign error probability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2752954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo