Climate change is increasing the number and the magnitude of wildfires, which become every year more severe. An accurate delineation of burned areas, which is often done through time consuming and inaccurate manual approaches, is of paramount importance to estimate the economic impact of such events. In this paper we introduce Burned Area Estimation through satellite tiles (BAE), an unsupervised algorithm that couples image processing techniques and an unsupervised neural network to automatically delineate the burned areas of wildfires from satellite imagery. We show its capabilities by performing an evaluation over past wildfires across European and non-European countries.
Unsupervised Burned Area Estimation through Satellite Tiles: A multimodal approach by means of image segmentation over remote sensing imagery / Farasin, Alessandro; Nini, Giovanni; Garza, Paolo; Rossi, Claudio. - ELETTRONICO. - 2466:(2019), pp. 1-10. (Intervento presentato al convegno MACLEAN: MAChine Learning for EArth ObservatioN (workshop @ECML/PKDD2019) tenutosi a Wurzburg (DE) nel 20/09/2019).
Unsupervised Burned Area Estimation through Satellite Tiles: A multimodal approach by means of image segmentation over remote sensing imagery
Alessandro Farasin;Paolo Garza;Claudio Rossi
2019
Abstract
Climate change is increasing the number and the magnitude of wildfires, which become every year more severe. An accurate delineation of burned areas, which is often done through time consuming and inaccurate manual approaches, is of paramount importance to estimate the economic impact of such events. In this paper we introduce Burned Area Estimation through satellite tiles (BAE), an unsupervised algorithm that couples image processing techniques and an unsupervised neural network to automatically delineate the burned areas of wildfires from satellite imagery. We show its capabilities by performing an evaluation over past wildfires across European and non-European countries.File | Dimensione | Formato | |
---|---|---|---|
MACLEAN2019_paper_7.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
paper7.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2750859