In this article, we discuss the system-optimum dynamic traffic assignment (SO-DTA) problem in the presence of time-dependent uncertainties on both traffic demands and road link capacities. Building on an earlier formulation of the problem based on the cell transmission model, the SO-DTA problem is robustly solved, in a probabilistic sense, within the framework of random convex programs (RCPs). Different from traditional robust optimization schemes, which find a solution that is valid for all the values of the uncertain parameters, in the RCP approach we use a fixed number of random realizations of the uncertainty, and we are able to guarantee a priori a desired upper bound on the probability that a new, unseen realization of the uncertainty would make the computed solution unfeasible. The particular problem structure and the introduction of an effective domination criterion for discarding a large number of generated samples enables the computation of a robust solution for medium- to large-scale networks, with low desired violation probability, with a moderate computational effort. The proposed approach is quite general and applicable to any problem that can be formulated through a linear programing model, where the stochastic parameters appear in the constraint constant terms only. Simulation results corroborate the effectiveness of our approach.

Robust dynamic traffic assignment for single destination networks under demand and capacity uncertainty / Calafiore, Giuseppe C.; Ghirardi, Marco; Rizzo, Alessandro. - In: JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS. - ISSN 1547-2450. - 24:4(2020), pp. 331-351. [10.1080/15472450.2019.1638780]

Robust dynamic traffic assignment for single destination networks under demand and capacity uncertainty

Calafiore, Giuseppe C.;Ghirardi, Marco;Rizzo, Alessandro
2020

Abstract

In this article, we discuss the system-optimum dynamic traffic assignment (SO-DTA) problem in the presence of time-dependent uncertainties on both traffic demands and road link capacities. Building on an earlier formulation of the problem based on the cell transmission model, the SO-DTA problem is robustly solved, in a probabilistic sense, within the framework of random convex programs (RCPs). Different from traditional robust optimization schemes, which find a solution that is valid for all the values of the uncertain parameters, in the RCP approach we use a fixed number of random realizations of the uncertainty, and we are able to guarantee a priori a desired upper bound on the probability that a new, unseen realization of the uncertainty would make the computed solution unfeasible. The particular problem structure and the introduction of an effective domination criterion for discarding a large number of generated samples enables the computation of a robust solution for medium- to large-scale networks, with low desired violation probability, with a moderate computational effort. The proposed approach is quite general and applicable to any problem that can be formulated through a linear programing model, where the stochastic parameters appear in the constraint constant terms only. Simulation results corroborate the effectiveness of our approach.
File in questo prodotto:
File Dimensione Formato  
Traffic_IntTransp.pdf

Open Access dal 24/07/2020

Descrizione: Post-print dell'autore
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 951.03 kB
Formato Adobe PDF
951.03 kB Adobe PDF Visualizza/Apri
Robust dynamic traffic assignment for single destination networks under demand and capacity uncertainty.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2749271