Multi-access edge computing (MEC) comes with the promise of enabling low-latency applications and of reducing core network load by offloading traffic to edge service instances. Recent standardization efforts, among which the ETSI MEC, have brought about detailed architectures for the MEC. Leveraging the ETSI model, in this paper we first present a flexible, yet full-fledged, MEC architecture that is compliant with the standard specifications. We then use such architecture, along with the popular OpenAir Interface (OAI), for the support of automotive services with very tight latency requirements. We focus in particular on the Extended Virtual Sensing (EVS) services, which aim at enhancing the sensor measurements aboard vehicles with the data collected by the network infrastructure, and exploit this information to achieve better safety and improved passengers/driver comfort. For the sake of concreteness, we select the intersection control as an EVS service and present its design and implementation within the MEC platform. Experimental measurements obtained through our testbed show the excellent performance of the MEC EVS service against its equivalent cloud-based implementation, proving the need for MEC to support critical automotive services, as well as the benefits of the solution we designed.

A MEC-based Extended Virtual Sensing for Automotive Services / Avino, Giuseppe; Paolo, Bande; Frangoudis, Pantelis A.; Christian~vitale, ; Casetti, CLAUDIO ETTORE; Chiasserini, Carla Fabiana; Gebru, Kalkidan; Adlen, Ksentini. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 16:4(2019), pp. 1450-1463. [10.1109/TNSM.2019.2931878]

A MEC-based Extended Virtual Sensing for Automotive Services

Giuseppe~Avino;Claudio Casetti;Carla Fabiana~Chiasserini;GEBRU, KALKIDAN;
2019

Abstract

Multi-access edge computing (MEC) comes with the promise of enabling low-latency applications and of reducing core network load by offloading traffic to edge service instances. Recent standardization efforts, among which the ETSI MEC, have brought about detailed architectures for the MEC. Leveraging the ETSI model, in this paper we first present a flexible, yet full-fledged, MEC architecture that is compliant with the standard specifications. We then use such architecture, along with the popular OpenAir Interface (OAI), for the support of automotive services with very tight latency requirements. We focus in particular on the Extended Virtual Sensing (EVS) services, which aim at enhancing the sensor measurements aboard vehicles with the data collected by the network infrastructure, and exploit this information to achieve better safety and improved passengers/driver comfort. For the sake of concreteness, we select the intersection control as an EVS service and present its design and implementation within the MEC platform. Experimental measurements obtained through our testbed show the excellent performance of the MEC EVS service against its equivalent cloud-based implementation, proving the need for MEC to support critical automotive services, as well as the benefits of the solution we designed.
File in questo prodotto:
File Dimensione Formato  
TNSM-2019-02419.R1.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
TNSM_2019_EarlyAccess_MEC.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
TNSM_Final.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2744456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo