This work presents an automatic methodology able to improve ma-chine-generated signatures for Android Malware detection. The technique relies on a population-less evolutionary algorithm and uses an unorthodox fitness function that incorporates unsystematic human experts knowledge in the form of a set of rules of thumb. The proposed optimization algorithm does not require to rank the individuals, as exploiting experts knowledge, the resulting population of candidate solutions is not a totally ordered set any more. Experimental results show that the resulting signatures are of good quality and more accurate than the original ones, lowering both false positives and negatives.
Evolutionary Antivirus Signature Optimization / Giovannitti, Eliana; Mannella, Luca; Andrea, Marcelli; Squillero, Giovanni. - STAMPA. - (2019), pp. 905-912. (Intervento presentato al convegno 2019 IEEE Congress on Evolutionary Computation (CEC) tenutosi a Wellington nel 10-13 June 2019) [10.1109/CEC.2019.8790240].
Evolutionary Antivirus Signature Optimization
GIOVANNITTI, ELIANA;Luca Mannella;Giovanni Squillero
2019
Abstract
This work presents an automatic methodology able to improve ma-chine-generated signatures for Android Malware detection. The technique relies on a population-less evolutionary algorithm and uses an unorthodox fitness function that incorporates unsystematic human experts knowledge in the form of a set of rules of thumb. The proposed optimization algorithm does not require to rank the individuals, as exploiting experts knowledge, the resulting population of candidate solutions is not a totally ordered set any more. Experimental results show that the resulting signatures are of good quality and more accurate than the original ones, lowering both false positives and negatives.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											2019-cec.pdf
										
																				
									
										
											 accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										9.5 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								9.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											biscardi.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
									
									
									
									
										
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
									
									
										Dimensione
										211.86 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								211.86 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2743672
			
		
	
	
	
			      	