A multi-layer neural network is employed to learn the mapping between Raman gain profile and pump powers and wavelengths. The learned model predicts with high-accuracy, low-latency and low-complexity the pumping setup for any gain profile.
Machine learning-based Raman amplifier design / Zibar, D.; Ferrari, A.; Curri, V.; Carena, A.. - ELETTRONICO. - M1J.1:(2019), pp. 1-3. (Intervento presentato al convegno OFC 2019 tenutosi a San Diego (CA) nel 3–7 March 2019) [10.1364/OFC.2019.M1J.1].
Machine learning-based Raman amplifier design
Ferrari, A.;Curri, V.;Carena, A.
2019
Abstract
A multi-layer neural network is employed to learn the mapping between Raman gain profile and pump powers and wavelengths. The learned model predicts with high-accuracy, low-latency and low-complexity the pumping setup for any gain profile.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2738993
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo