The imperative to reduce emissions to counteract climate change has led to the use of renewables progressively in more areas. Looking at district heating, there is a growing interest in coupling current production systems and carbon-neutral technologies. This paper presents a methodology to support decision making about carbon-neutral technologies for district heating. The process is organized in two stages, the first one aims at optimizing the different carbon-neutral technologies according to an objective function and assess uncertainties and dependencies. In the second stage, the alternatives are evaluated using Stochastic Multicriteria Acceptability Analysis (SMAA), a simulation-based method specifically designed to consider imprecise information. The methodology was applied to a case-study in Torino, Italy, which simulates the city district heating network at a smaller scale, with the aim to explore strategies for replacing gas boiler with more sustainable technologies. According to preference information provided by decision makers, the most preferred alternative resulted in the introduction of a solar heat plant combined with an increase size of daily heat storage. Solar heat can benefit from incentives while reducing operational costs and emissions, maximizing the use of carbon-neutral heat thanks to the storage.

Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating / Pinto, Giuseppe; Abdollahi, E; Capozzoli, A.; Savoldi, L.; Lahdelma, R.. - In: ENERGIES. - ISSN 1996-1073. - 12:9,(2019), p. 1653. [10.3390/en12091653]

Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating

PINTO, GIUSEPPE;Capozzoli, A.;Savoldi, L.;
2019

Abstract

The imperative to reduce emissions to counteract climate change has led to the use of renewables progressively in more areas. Looking at district heating, there is a growing interest in coupling current production systems and carbon-neutral technologies. This paper presents a methodology to support decision making about carbon-neutral technologies for district heating. The process is organized in two stages, the first one aims at optimizing the different carbon-neutral technologies according to an objective function and assess uncertainties and dependencies. In the second stage, the alternatives are evaluated using Stochastic Multicriteria Acceptability Analysis (SMAA), a simulation-based method specifically designed to consider imprecise information. The methodology was applied to a case-study in Torino, Italy, which simulates the city district heating network at a smaller scale, with the aim to explore strategies for replacing gas boiler with more sustainable technologies. According to preference information provided by decision makers, the most preferred alternative resulted in the introduction of a solar heat plant combined with an increase size of daily heat storage. Solar heat can benefit from incentives while reducing operational costs and emissions, maximizing the use of carbon-neutral heat thanks to the storage.
2019
File in questo prodotto:
File Dimensione Formato  
energies-12-01653.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2732093
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo