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Abstract: The imperative to reduce emissions to counteract climate change has led to the use of 
renewables progressively in more areas. Looking at district heating, there is a growing interest in 
coupling current production systems and carbon-neutral technologies. This paper presents a 
methodology to support decision making about carbon-neutral technologies for district heating. 
The process is organized in two stages, the first one aims at optimizing the different carbon-neutral 
technologies according to an objective function and assess uncertainties and dependencies. In the 
second stage, the alternatives are evaluated using Stochastic Multicriteria Acceptability Analysis 
(SMAA), a simulation-based method specifically designed to consider imprecise information. The 
methodology was applied to a case-study in Torino, Italy, which simulates the city district heating 
network at a smaller scale, with the aim to explore strategies for replacing gas boiler with more 
sustainable technologies. According to preference information provided by decision makers, the 
most preferred alternative resulted in the introduction of a solar heat plant combined with an 
increase size of daily heat storage. Solar heat can benefit from incentives while reducing 
operational costs and emissions, maximizing the use of carbon-neutral heat thanks to the storage. 

Keywords: multicriteria decision analysis; SMAA; district heating; carbon-neutral 
 

1. Introduction 

The transition toward a sustainable society is rooted in the use of renewable and carbon-neutral 
technologies, which have increased their share from 11 to 18% in the last 10 years in Europe [1]. 
However, these efforts proved not to be sufficient to meet the ambitious emissions reduction target 
set by EU for 2050, i.e., reducing emissions by 80–95% compared to the 1990 levels [2]. To achieve 
these goals, two complementary approaches have been used: Increase energy efficiency of end-users 
and integrate renewables in the energy production system, as indicated in References [3,4]. 

Several studies analyzed the design of 100% renewable energy systems [5,6] with a major 
attention on the electricity production rather than on the heat production. However, as highlighted 
in Heat roadmap Europe [7], the role of thermal energy production is fundamental, as it represents 
half of the energy produced with technologies having a high carbon dioxide emission factor. This 
study focuses then on the heat sector, in particular on district heating (DH), seen as the backbone for 
energy transition [3]. In fact, various studies have already demonstrated that the emissions can be 
reduced through the integration of renewable energy sources in DH systems [8–10]. 

According to EU targets, the decision between different alternatives should take into account 
not only economic criteria, but also environmental and technical ones. Therefore, to analyze the 
complexity of the sustainability problem, Multicriteria Decision Support (MCDS) [11] methods are 
helpful in the decision-making process. MCDS is an approach that helps addressing complex 
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problems, involving high uncertainty, conflicting objectives, multi-interests and perspectives. Such 
methods can provide solutions to complex energy management problems, especially considering the 
increasing attention for the environmental protection, as reviewed in Reference [12]. Many studies 
have analyzed power systems, including solar power [13,14], wind power [15,16], and mixed heat 
and power systems [17] by implementing MCDS. 

Several MCDS methodologies for energy applications are based on deterministic analysis [18] 
and their applications have been focused mainly on the electricity sector. Considering the rapid 
change, the energy infrastructure should face for addressing the emission targets, new 
methodological approaches capable to properly account stochastic variables and poor information 
need to be developed. 

The Stochastic Multicriteria Acceptability Analysis (SMAA) method, introduced by Lahdelma 
et al. [19], was developed for decision problems where criteria and preference information are 
uncertain, inaccurate or partly missing. SMAA has been applied to several different problems, 
including energy policy assessment [20], energy monitoring system selection [21], combined heat 
and power (CHP) plant selection [22], heating choices for a new residential area [23], and 
carbon-neutral technologies for DH [24]. In Reference [25] is presented a recent survey of SMAA 
methodology and applications. 

This paper presents a methodology for supporting decision making of carbon-neutral 
technologies for DH, specifically designed to consider uncertainties and dependencies for both 
baseline system and energy system alternatives. 

The novelty of the approach is that, differently from the most common MCDS methods, it can 
consider stochastic variables in the analysis, and, in contrast to earlier SMAA applications in the 
energy field, it uses a correlation matrix, to properly taken into account the dependencies between 
criteria and alternatives. Moreover, a novel aspect of the paper with respect to existing literature 
(e.g., Reference [24]), is that the paper does not simply assess the best alternative to cover peak 
demand, but it also explores the interaction of the alternatives proposed with the existing system 
analyzed. This task is pursued by computing a correlation matrix, so that the analysis makes it 
possible to shift from a qualitative to a quantitative playground for assessing the dependencies 
among the alternatives. 

In this paper, the proposed methodology is applied to the test case of university campus of 
Politecnico di Torino (PoliTo), of which the thermal load is satisfied by DH. Fitting the PoliTo 
heating load curve, the DH system is reproduced at a smaller scale, with the aim to replace the 
installed heat generation system with cheaper, more flexible and more sustainable technologies 
according to decision makers’ preferences. Section 2 explains the conceptual framework of the 
methodology, while Section 3 presents in detail the different methods used. Then, Section 4 
introduces the case study to which the proposed methodology is applied. Section 5 presents criteria 
and alternative designs, and Section 6 the results. Discussion is presented in Section 7, and 
concluding remarks are given in Section 8. 

2. Methodology 

This paper aims to analyze in terms of multiple criteria how different low-carbon technologies 
can interact with a DH system. The methodology aims at supporting decision making in the DH 
field, with attention on cases affected by several parameters with uncertainties. 

The analysis is organized in two stages. The first stage (Figure 1) consists of the simulation and 
optimization of the different energy system alternatives, in order to assess their performance 
according to different criteria. In this study, the LP2 [26] software was used and its operation is 
described in Section 3.1. To assess the uncertainties and their dependencies (correlations), a number 
of simulations were performed for all the alternatives with different random values of the stochastic 
parameters (e.g., fuel price and electricity price). 

The outcomes of this first stage can be summarized in: 

• A matrix containing mean value and uncertainties for each alternative and criteria; 
• A correlation matrix. 
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Figure 1. Framework of the proposed methodology (Stage 1): Construction of the energy model, 
uncertainties and dependencies analysis for each alternative. 

The second stage (Figure 2) consists of a multicriteria evaluation and a comparison of the 
different alternatives based on the results of the first stage. The SMAA method was used to identify 
the most “acceptable” alternative, as better specified in Section 3.2. 

This stage involves the following steps: 

• A first Monte Carlo simulation, performed on the basis of the outcome of the first stage in order 
to evaluate the acceptability of alternatives; 

• The exploitation of preference information, used to restrict the feasible weight space for criteria; 
• A second Monte Carlo simulation, performed to assess the confidence factors for the results. 

 

Figure 2. Framework of the proposed methodology (Stage 2): (1) Definition of the PDF according to 
mean value and uncertainties; (2) random sample generation according to correlation matrix; (3) 
definition of feasible weight space; and (4) analysis of the results. 
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The strength of the SMAA methodology consists in the ability to analyze alternatives with 
inaccurate or uncertain input data, even without explicit preferences of the decision makers (DM). A 
description of SMAA is provided in Section 3.2. 

In the following, the methods used for the optimization process are briefly described, with the 
aim to clarify how the optimal solution is obtained and which parameters can affect it. In the same 
section, the SMAA method is described in more detail, highlighting the procedure adopted to 
consider uncertainties. 

3. Methods 

3.1. Simulation and Optimization 

The operation of each alternative configuration was analyzed using a linear programming 
model. The model is solved using the LP2 software, which is based on the sparse revised Simplex 
algorithm and the product form of inverse [26]. LP2 has been used in several studies involving CHP 
and DH [27–31] and their interactions with renewable energy sources [32,33]. The model determines 
an optimal DH production planning according to a min/max function. The objective function 
considered in the present analysis is the minimization of the operating costs, further analyzed in 
Section 5. Consequently, the heat demand can be optimally satisfied, introducing an “overall rank 
order”. The overall rank order considers all costs, selecting the least expensive technologies for each 
time interval, providing a ranking from the cheapest technology to the most expensive one. In this 
way the heat demand can be satisfied using the cheapest combination of technologies. 

The optimization procedure is divided in two steps: 

1. A sensitivity analysis is performed to gain maximum economic return from the introduction of 
each technology. 

2. The optimization is performed to satisfy the heat demand by maximizing the role of storage 
and the exploitation of renewable technologies. 
The optimization procedure is further described in Section 5, while more detailed references on 

the method can be found in References [30,34]. 

3.2. Stochastic Multicriteria Acceptability Analysis 

The SMAA method [19,35] was applied for evaluating and comparing the different alternatives. 
The SMAA is based on exploring the weight space of the criteria to describe the preferences that 
would make each alternative the most preferred one (or that would give a certain rank). The method 
has been developed for multicriteria decision making problems with multiple DMs and uncertain or 
partly missing information. 

The decision problem is formulated as a set of m alternatives {𝑥 , 𝑥 , … , 𝑥 } to be evaluated in 
terms of n criteria. The decision makers’ preference structure is represented by a value function 𝑢(𝑥 , 𝑤) , that maps the different alternatives by using a weight vector 𝑤 . The weights are 
non-negative and normalized, so that the feasible weight space is defined as follows: 

𝑊 = {𝑊 ∈ 𝑅  | 𝑤 ≥ 0 𝑎𝑛𝑑 𝑤 = 1} (1) 

Figure 3a shows the feasible weight space in a 3-dimensional case. The DM’s preferences about 
weights are represented by suitable weight distribution with joint probability density function (PDF) 𝑓(𝑤) in the feasible weight space 𝑊. Uncertain or imprecise criteria are represented by a matrix of 
stochastic variable 𝜉  with joint probability density function 𝑓(𝜉) in the space 𝑅 . Since all infos 
are represented as distributions, a Monte-Carlo simulation is used to analyze the problem efficiently. 
When evaluating each alternative, K=10,000 simulation rounds were used; this sample size is 
sufficiently large to make the standard error of the expected value small compared to the variance 
(√  ≈ 1%). 
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The DMs’ preference structure is represented by a value function 𝑢(𝜉 , 𝑤) , used to map 
stochastic criteria and weights, evaluating each alternative through an additive value function, as 
reported in Equation (2): 

𝑢(𝑥 , 𝑤) = 𝑤 ∗ 𝑢 + 𝑤 ∗ 𝑢 + ⋯ + 𝑤 ∗ 𝑢  (2) 

SMAA calculations were implemented generating simultaneously criteria measurements and 
weights from their distribution (to consider uncertainties), then, the value function was applied to 
rank the alternatives. The calculation was repeated K times and the following statistics about the 
performance of the alternatives were computed: 

• 𝐵 : the number of times alternative 𝑥  obtained rank 𝑟; 
• 𝑊 : sum of the weight vectors that made alternative 𝑥  most preferred. 

Figure 3b shows a uniform distribution of the weights in a 3-dimensional space without 
preference information. From the statistics collected, the basic SMAA measures, rank acceptability 
indices, central weight vectors and confidence factors are computed. 

The rank acceptability index 𝑏  measures the variety of different preferences that place 
alternative 𝑥  on rank 𝑟. It is the share of all feasible weights that make the alternative acceptable 
for a certain rank. The first rank acceptability index 𝑏  is the probability that the alternative is most 
preferred. The rank acceptability indices are estimated as follows: 𝑏  ≈ 𝐵𝐾  (3) 

Alternatives with high acceptability for the best ranks are taken as candidates for the most 
acceptable solutions, while alternatives with low or zero acceptability are excluded. If there are no 
clear preferences for the best ranks, the method indicates the need to analyze the problem more 
thoroughly, including dependency information and a detailed analysis of criteria and weights 
preferences. 

The central weight vector 𝑤  is the expected center of gravity of the favorable first rank weights 
of an alternative. 

It is estimated as follows: 

𝑤 ≈ 𝑊𝐵  (4) 

The central weight vector represents the preferences of a hypothetical DM supporting this 
alternative. Presenting the central weights of different alternatives to the DMs may help them to 
understand how different weights correspond to different choices with the assumed preference 
model, or even help the DMs to express their preferences in term of weights. 

The confidence factor 𝑝  is the probability for an alternative to obtain the first rank when the 
central weight vector is chosen. Since central weights are available only after SMAA simulation, a 
second simulation is needed to compute the confidence factors. The additional statistics 𝑃  
represents the number of times alternative 𝑥  obtaines rank 1 using central weights vector and it is 
used to estimate confidence factor as follows: 𝑝 ≈ 𝑃𝐾  (5) 

The confidence factor measures whether the criteria data are accurate enough to discern the 
efficient alternatives, and it is equal to the first rank acceptability index using precise information on 
weights. To increase the confidence factor specific analysis on uncertainties (as dependencies 
analysis by means of correlation matrix) could be performed. 
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Figure 3. (a) Feasible weight space in the 3-criterion case; (b) uniform sampling projected on w1-w2 
plane; and (c) uniformly distributed weight with ordinal information (w1 ≥ w2 ≥ w3). 

3.2.1. Modelling Uncertainties 

In this application, both ordinal and cardinal criteria measurements were applied: 

• Ordinal criteria (Flexibility) are measured by ranking the alternatives from the best (1) to the 
worst (m). An ordinal scale does not include information about the intervals between the steps 
of the scale, i.e. how much better each rank 𝑟 is with respect to rank 𝑟 + 1 remains uncertain. 
Ordinal uncertainty was handled by assigning to different ranks 𝑟 = 1, … , 𝑚  stochastic 
cardinal values (𝑠 , … , 𝑠 , … . , 𝑠 )  in the range 0,1 ,  so that they are consistent with the 
ranking information. 

• For cardinal criteria, partial values 𝑢  were computed from the criteria measurements 𝑥  by 
linear scaling according to Equation (6) so that the best outcome for each criterion corresponds 
to 1 and the worst to 0. 𝑢 = 𝑥 − 𝑥𝑥 − 𝑥  (6) 

4. Case Study 

In this section the thermal load of the university campus of PoliTo is analyzed. First, a glance of 
DH system of Turin municipality is provided, then the case study is analyzed, proposing a method 
to overcome the mismatch between the production system size and the size of the considered 
substation. 

Turin is the capital of the Piedmont region in North-West of Italy. The city characterized by a 
continental climate (2,617 heating degree days) and has approximately 900,000 inhabitants. Despite 
being the city with the widest DH coverage in Italy, the city DH system has still large expansion 
possibilities. Today, the generation mix is composed of three natural gas CHP plants (740 MW), 
1,000 MW of auxiliary gas boilers and 12,500 million m3 of daily heat storage via water tanks. 

The case study focuses on a part of Turin city, the university campus of PoliTo. The PoliTo 
LivingLAB [36] provided data on thermal load of the different buildings of the campus. 

Since the campus represents only a substation of the DH system, introducing large-scale 
alternatives in the current DH network would not allow to directly evaluate benefits, due to lower 
order of magnitude of the campus demand. To solve this problem and go on with the application of 
the methodology, a smaller production system was assumed to cover the campus heat demand. The 
production system was scaled down according to the ratio between the campus’ peak demand and 
Torino city’s peak demand [37]. 

The scaled system shows the same operation of plants of the system investigated in this paper, 
giving priority to CHP and using Heat Only produced by Boilers (HOB) only during peak hours. 
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The resulting scenario represents the base case, used as reference for the alternatives explored and 
described in the next section. 

The thermal load profile of the PoliTo building complex follows the academic pace and it is 
characterized by: 
1. Absence of a base load; 
2. Absence of heat demand when PoliTo is closed; 
3. A decreasing of heat demand after morning peak; 
4. Negligible heat demand during the summer season. 

Figure 4 shows the annual heat load duration curve, which highlights how the absence of a 
base-load and the negligible demand during the summer period reduce the heat consumption. The 
heat load is higher than 0 MW for around 3,000 hours, higher than 5 MW for around 1,250 hours and 
higher than 10 MW for less than 500 hours, highlighting the importance of the auxiliary system to 
cover the peak load. 

 
Figure 4. Total annual heating load duration curve for the PoliTo test case. 

Figure 5 shows the heating profile in a typical week of the different seasons. As expected, the 
highest peak occurred during the winter around 6:00 in the morning, with a decrease over the day. 
In spring and autumn, the heat demand is lower, thanks to the increase of external temperature, 
while during the summer heat demand is almost negligible. 
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Figure 5. PoliTo heating demand profile in a typical week of the different seasons: winter (blue line), 
spring (orange line), summer (green line) and autumn (red line). 

5. Criteria and Design Alternatives 

The selection of criteria has been performed with the aim of analyzing different scenarios after 
to the introduction of the alternative technologies. 

Three types of criteria were selected: 
• Economic: In the analysis two economy-related criteria were considered: the investment cost 

and the operational cost. 
• Environmental: CO2 and pollutants emissions were selected according to the technology 

considered. 
• Technical: The increase of production capacity to replace heat produced only by boilers for 

peak demand were considered. Flexibility indicates the ability of the production system to 
adjust energy production according to demand variations. 
The criteria chosen for the analysis are summarized in Table 1 and their evaluation is further 

described in the next subsection. 

Table 1. Criteria chosen to evaluate alternatives for the case study. 

Criteria Description 
Cost  

C1 Investment cost Cost of initial investment for the alternative as annuity 
C2 Operational cost Cost of the production system including fuel, electricity, maintenance 

Environment  
E1 CO2 emissions The CO2 emissions during the year 

E2 Pollutants emissions NOX and CO emissions during the year 
Technical  

T1 Flexibility Fast-response adjustment of energy production 

The studies presented in literature on renewable-integrated DH network were analyzed to 
select the most suitable technologies. 

Several alternatives are introduced to replace gas boilers and the aim of the analysis was to 
simulate the interaction between the existing CHP systems and the most promising available 
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technologies, in order to provide a cheaper and more sustainable DH system. The analysis also aims 
at optimizing the use of the carbon-neutral technologies; task achieved designing the size of each 
technology and investigating the role of the heat storage. 

The alternatives are summarized in Table 2 and briefly described in the following: 
• Base case: The production system includes 3 CHP plants, heat supplied only by boilers and a 

small heat storage. 
• Heat storages: The alternative A2 assumes an increase of daily storage size. 
• Solar heat: A solar heat plant is integrated with DH system. Based on data gathered from an 

existing plant [38], and irradiance data [39], three alternatives A3, A4, and A5 were analyzed, 
including one alternative without additional storage, a daily storage, and a seasonal storage. 
The power of the solar plant is defined using the maximum specific production (𝑞 =700 𝑊/𝑚 ) and the area of the plant (𝐴 = 1000 𝑚 ), obtaining a maximum power of 𝑃 =𝑞 ∗ 𝐴 = 0.7 𝑀𝑊. 

• Ground source heat pump (GSH): According to a survey on large heat pumps in Europe [40], a 
GSH is considered and two scenarios have been analyzed including alternatives with and 
without the coupling with heat storage (A6,A7). 

• Biomass boiler: The alternative A8 considers the replacement of part of boiler capacity with a 
biomass boiler, studying the possible economic and environmental benefits. 

• Electric boiler: using carbon-neutral electricity generation systems, heat can be produced with 
almost 100% electrical-to-thermal efficiency and no emissions. Even if it is a priori known that 
the conversion of electricity into heat is not economically convenient or exergy-efficient, the 
interaction between electrical and heating sector can help balance the overproduction of 
renewable electricity, since heat can be stored more easily than electricity (A9). 

Table 2. Set of alternative scenarios. 

Alternative Description 
A1 Base case 
A2 Increase of daily storage 
A3 Introduction of a solar heat plant 
A4 Introduction of a solar heat plant and increase of daily storage 
A5 Introduction of a solar heat plant and a seasonal storage 
A6 Introduction of a ground source heat pump (GSH) 
A7 Introduction of a ground source heat pump and increase of daily storage 
A8 Substitution of gas boiler with biomass boiler 
A9 Substitution of gas boiler with electric boiler 

The production capacities for different alternatives (including base case) are summarized in 
Table 3. 

Table 3. Production capacities for the different alternatives. 

Technologies A1 A2 A3 A4 A5 A6 A7 A8 A9 
CHP Q (MW) 10 10 10 10 10 10 10 10 10 
CHP P (MW) 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 
HOB (MW) 13.9 13.9 13.9 13.9 13.9 13.9 13.9 8.9 8.9 

Storage (MWh) 9.8 50 9.8 50 150 9.8 50 9.8 9.8 
Solar plant (MW) - - 0.7 0.7 0.7 - - - - 
Heat pump (MW) - - - - - 0.15 0.15 - - 

Biomass boiler (MW) - - - - - - - 5 - 
Electric boiler (MW) - - - - - - - - 5 
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5.1 Assumptions 

In the following, the assumptions used to model the base case and the alternatives are 
presented. The first part focuses on the economic and technical assumptions used to simulate 
different alternatives, followed by uncertainties assumptions. Lastly, preference information of the 
experts is discussed. 

5.1.1. Cost Assumptions 

For the case study, the objective function used in the first stage for the simulation and 
optimization of different alternatives is the minimization of operating cost, displayed in Equation 
(7). 

min 𝑍 = (𝑐 + 𝑐 & )𝑥 + (𝑐 & − 𝑐 )𝑥  (7) 

To evaluate the operational cost of the different alternatives, the model uses the spot electricity 
price (𝑐 ) [41] (with the hypothesis that the electricity produced by the CHP is entirely sold to the 
market), fuel prices ( 𝑐 ) [42], and other production costs ( 𝑐 & ), relating them to fuel 
consumption (𝑥 ) and power production (𝑥 ). All expenditures and revenues are summarized in 
Table 4 and Table 5. The optimal solution satisfies the heat demand using the cheapest technologies 
combination at each hour for each alternative according to technical constraints (e.g., partial load 
and maintenance stop), and using heat storage optimally. 

Table 4. Costs and properties of the components of the different alternatives considered in the 
analysis. 

Plant 
Heat 

Capacity Efficiency 
Investment 

Cost O&M4 Cost 
𝐂𝐎𝟐 e.f. 
t/GWh 

Pollutants 
e.f. t/GWh 

CHP 10 MW 0.75–0.90 - 1.8 €/MWh1 200 0.129 
HOB 13.9 MW 0.87 - 2.8 €/MWh 200 0.129 

Solar plant 0.7 MW 0–0.85 0.27 M€/MW 2 €/MWh 0 0 
GSH 0.15 MW 4.5 (COP) 0.7 M€/MW 2 €/MWh 45 0.03 

Biomass boiler 5 MW 0.89 0.14 M€/MW 0.5 €/MWh 0 2.34 
Electric boiler 5 MW 1 0.08 M€/MW 0.5 €/MWh 0 0 

1 The O&M for the CHP are associated only to electricity production. 

Table 5. Assumed costs of the fuels, including tax and subsidies. 

Fuel Price Units of Measure 
Natural gas price 31.5 €/MWh 

Biomass price 20.5 €/MWh 
Subsidy for cogeneration 2 2.7 €/MWh 

CO2 tax 7.2 €/t 
2 The subsidy for cogeneration is associated only to electricity production. 

5.1.2. Technical Assumptions 

The technical constraints for CHP assume that the characteristic operating regime of CHP is 
convex in terms of heat and power, meaning that if the plant can operate at two different points, it 
can also operate at any point on the line segment connecting them [26]. This hypothesis is well 
supported by the actual operation of the CHP [43]. Consequently, as done in Reference [44], the CHP 
is modelled as a convex combination of its characteristic operating points. The characteristic 
operating points were obtained from Reference [37] and Reference [45]. Moreover, to model each 
technology, technical constraints (e.g, efficiency, size) are used to relate output (heat, electricity) to 
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inputs (fuel), as summarized in Table 4. One of the assumptions done to model CHP concerns with 
the role of heat as a by-product, that justifies the allocation of O&M costs and subsidy only to 
electricity production. The daily storage operation is modelled according to Reference [33], while 
seasonal storage operation according to Reference [46]. In particular, the size of both daily and 
seasonal storage was evaluated with a sensitivity analysis, by considering the marginal benefit 
introduced by additional size of storage and the effects of heat losses on operational costs and 
emissions. A detailed description of the sensitivity analysis process can be found in Reference [34]. 

Lastly, component and dynamic constraints (storage behavior) are coupled with the heat 
balance constraint. 

The resulting model has a planning period of one year, with hourly resolution, therefore, to 
reduce computational time special decomposition techniques have been used, solving hourly 
models separately and coordinated under top level iterations to consider dynamic constraints. 

The other criteria were evaluated as follow: 

• The investment (and operational) costs were selected according to [38] and [45] considering 
subsidies if available. Solar plant and biomass boiler benefit from Conto Termico 2.0 [47], a 
subsidy scheme introduced in Italy that reduces investment cost; in particular, biomass boiler 
and electric boiler must replace existing gas boiler to access subsidies, differently from other 
alternatives. 

• From the optimal solution CO2 and pollutants emissions were evaluated using emission factors 
(e.f.) according to [43] and [48]. 

• Flexibility was evaluated a priori according to the considered technology, and how the final 
system can adjust its energy production. According to the definition, systems with storage are 
more flexible than systems without storage. Moreover, since alternatives A2–A7 add capacity to 
the system they are more flexible than the base case and the last two alternatives. These 
considerations were translated into a ranking in which 1 is the best value and 9 the worst. 

5.1.3. Uncertainties Assumptions 

Usually, ordinal criteria are not affected by uncertainties, while for certain criteria a reasonable 
uncertainty needs to be assumed to avoid mistakes. For criteria that involves complex system, the 
iterative analysis previously described must be carried out. 

In the paper the uncertainties related to the different criteria were treated as follows: 

• Investment cost: It was supposed independent from the other criteria with an uncertainty of 
±10%. This value was already used in previous SMAA analysis in absence of information, 
according to References [22,23]. 

• Operational cost and CO2 emissions: To consider uncertainties, the production planning 
procedure was repeated iteratively using electricity and fuel price variables with respect to the 
“current state” of the system. Depending on the fuel used, the consequent emissions change, 
therefore the analysis was extended to CO2 emissions. 

• Pollutants emissions: Since the pollutant emissions strongly depend on startup and partial 
load, in absence of information a ±10% of uncertainty was supposed. 

• Flexibility: Due to the nature of this criteria, the order was considered not affected by 
uncertainty. 

5.1.4. Preference Information 

A group of 4 energy experts from PoliTo participated to the selection process. The experts were 
chosen among professor of PoliTo; they hold a Ph.D. in the field of energy, with working experience 
from 5 years to over 15 years in the energy field. Each expert was asked to assess the importance of 
the criteria ordering it from the most to the least important. If the experts could not provide a certain 
preference, they could insert a question mark, denoting unspecified preference order. The experts 
provided information independently and anonymously, to obtain unbiased opinions. Figure 3c 
illustrates how such ordering information affects the weight space in 3-dimensions. 
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Table 6 shows the DMs’ preference information, highlighting how economic criteria are always 
preferred with respect to other criteria. This result was expected, since the DH is characterized by 
high investment costs. Moreover, pollutant emission (E2) is considered as the least important 
criterion by all experts, since pollutants emissions are already regulated by the law in Italy. On the 
other hand, the increasing attention of carbon-neutral technologies is represented by the preferences 
of CO2 emissions (E1) with respect to flexibility (T1) by some experts, balanced by the opinion of 
other experts. However, decision makers’ preferences highlight how, even if considering only 
carbon-neutral technologies, the main drivers of the feasibility study are of economic nature. 

Table 6. Order of preference for criteria given by experts. 

DM 1  2  3  4  5 
1 C1 > C2 > E1 > T1 > E2 
2 C1 > C2 > T1 > E1 > E2 
3 C2 ? C1 > E1 > T1 > E2 
4 C1 > C2 ? T1 > E1 > E2 

6. Results 

This section first analyzes the outcome of the simulations performed with LP2, and how they 
were used in SMAA simulations. Then, the results of the SMAA method are discussed. 

6.1 Simulation and Optimization Results 

Table 7 shows the mean value and the associated uncertainties of the LP2 model (Stage 1) for 
the different alternatives considered here. 

Table 7. LP2 outputs for the different alternatives. 

Output Inv (k€) Op (k€/y) 𝐂𝐎𝟐 (t/y) Poll (t/y) Flex 
A1 0 360 ± 13 3,800 * 2.41 ± 0.24 9 
A2 100 ± 10 344 ± 17 4,000 * 2.53 ± 0.25 4 
A3 190 ± 20 359 ± 15 3,720 * 2.36 ± 0.23 6 
A4 290 ± 30 332 ± 17 3,700 * 2.35 ± 0.23 3 
A5 550 ± 50 323 ± 19 3,900 ± 20 2.46 ± 0.25 1 
A6 110 ± 10 364 ± 13 3,680 * 2.33 ± 0.23 5 
A7 210 ± 20 345 ± 16 3,830 * 2.42 ± 0.24 2 
A8 400 ± 40 355 ± 15 3,520 ± 70 4.29 ± 0.43 7 
A9 410 ± 40 363 ± 14 3,770 * 2.39  0.24 8 

* The uncertainty is <<1 t/y 

Results highlights how emissions’ uncertainties are negligible compared to the mean value. 
This was expected and can be explained looking at the modified parameter. In fact, the variation of 
electric and fuel prices does not modify the overall rank order produced during the first stage (and 
consequently emissions). 

Moreover, since most of the heat is produced by the CHP in all alternatives, there will be some 
dependencies across both criteria and alternatives. To assess these kind of dependencies, as 
proposed in [49], the output of stage 1 was used to recreate a Multivariate Gaussian distribution. If, 
different from the test case, a large amount of data were already available, an alternative way to 
represent the dependencies as a sample is presented in Reference [50]. 

The results of the analysis are highlighted by the correlation matrix, presented in Table A1. The 
matrix shows a perfect positive correlation between the operational cost of the alternatives, while a 
slight negative correlation was found between operational cost and emissions. The table also shows 
that the correlation between emissions of the alternatives is negligible. 
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6.2. SMAA Results 

In the following, the results of SMAA simulations performed using criteria and uncertainty 
information (Table 7) and ordinal weight information provided by the experts (Table 6) are 
analyzed. 

Figure 6 shows the rank acceptability indices (𝑏 ) for the alternatives expressed in percentage. 
It represents the probabilities that an alternative obtains a certain rank, considering uncertain criteria 
and DMs preferences. From the results it can be seen that alternative A4 (solar heat plant coupled 
with storage) and alternative A2 (base case with increased size of storage) are the most acceptable 
alternative with 50% and 26% acceptability values. The results also highlight that A3, A5, A8, and A9 
obtain less than 1% of acceptability index for the first rank, classifying them as inefficient 
alternatives. Moreover, the last rank is clearly obtained by alternative A9 with 86% acceptability. The 
strength of the results is provided by the confidence factors 𝑝 , shown in Table 8, representing the 
probability that an alternative obtains the best rank if its central weight vector is chosen. For the 
most acceptable alternatives this value is higher than 90%, while for the alternative A3 and A9, there 
is no confidence factor, since they are inefficient alternatives. 

 

Figure 6. Rank acceptability indices of alternatives (%). 

The central weights, shown in Figure 7, represent typical preferences that make each alternative 
the most preferred. As discussed before, inefficient alternatives have undefined central weights, 
while other alternatives follow the ordinal criteria expressed by the DMs. Alternative A9 is 
inefficient since it obtains the highest acceptability for the last rank, alternative A3 is considered 
inefficient due to the presence of alternative A4, that obtains better results thanks to the coupling 
with the storage. Investment cost is the most important criteria, with weight that varies from 34% to 
68%; on the contrary pollutants’ emission is considered the least important criteria, with weight from 
2% to 5%. 
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Figure 7. Central weights of the alternatives (%). 

Table 8. Confidence factor, rank acceptability indices and central weights for the alternatives. 

Alt pc b1 b2 b3 b4 b5 b6 b7 b8 b9 Inv Op 𝐂𝐎𝟐 Poll Flex 
A1 96 8 7 7 9 18 17 22 11 0 68 16 9 2 5 
A2 93 26 20 19 17 10 5 3 1 0 52 28 6 3 11 
A3 - 0 0 1 6 21 53 18 1 0 - - - - - 
A4 94 50 21 10 7 7 4 0 0 0 38 27 16 5 14 
A5 6 1 4 6 12 10 10 27 21 8 34 28 12 5 21 
A6 55 7 21 22 26 22 3 0 0 0 52 19 15 5 10 
A7 24 7 25 34 20 11 3 0 0 0 43 24 11 5 18 
A8 9 0 2 1 2 2 5 28 54 5 38 29 26 2 6 
A9 - 0 0 0 0 0 0 1 12 86 - - - - - 

After the analysis of SMAA results, a quantitative comparison between the most acceptable 
alternatives and the base case was performed as shown Figure 8. In the follow-up of an initial 
investment, which is reduced thanks to the incentives, there are benefit in the operational costs and 
environmental aspects. As previously commented, there is a small uncertainty for CO2 criterion, 
since this value mostly depends on the fuel used. Nevertheless, due to the high correlation between 
the alternatives, the alternative A4 was found to be always better than the alternative A1, 
considering both operational cost and environmental aspects. 
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Figure 8. Comparison of criteria between the base case and the most acceptable alternative. 

7. Discussion 

Even in the cases when a single superior alternative is not defined, the proposed methodology 
proved to be able to discern the most acceptable technologies from the least one. As demonstrated by 
the results, the electric boiler alternative does not seem feasible in the Italian scenario. In fact, this 
technology is inefficient since degrades high quality energy (electricity) into low quality energy (low 
temperature heat), however particular conditions such as surplus of renewable electricity or low 
electricity price could identify the electric boiler as the cheapest way to stabilize the electric grid. 

The alternative A4, identified as the best one, has almost homogeneous weights but, differently 
from other alternatives with homogeneous weights (A5, A6, A7), it better reflects decision makers 
preferences. In particular, the alternatives A5 and A7 have almost the same weights of A4, but they 
are outranked by A4, as identified by the low confidence factor of these two alternatives. On the 
other hand, A6 is outranked by A2, the second most preferred alternative. 

The ground source heat pump (A6–A7) represents a good compromise of the previous criteria, 
outranked by the solar technology (A4), that in the Italian case seems to be the best alternative to 
increase the capacity of the system. Coupling storage and solar heat helps to match the demand, 
while seasonal storage (A5) does not turn out to be a valid alternative, due to the high investment 
cost. 

Moreover, analyzing the weights, can be seen that there are two inefficient alternatives, A3 and 
A9. These two alternatives (solar heat without additional storage and electric boiler) do not have a 
combination of weights that make them preferred. For the solar heat, this is explained by the 
fundamental role of the storage, that increases dramatically the performance of the system with an 
almost negligible investment cost. On the other hand, the alternative A9 is directly compared to A8, 
having similar investment cost and flexibility, but a higher operational cost (electricity is much more 
expensive than biomass) and CO2 emissions. The overall rank order produced in the first stage 
favors biomass boiler if electricity price increases, to maximize revenues from CHP, while the 
electric boilers, even if with a unitary (electrical-to-thermal) efficiency, requires electricity to be run, 
binding it to a marginal role. 
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The analysis highlighted how, even if the carbon-neutrality of the DH system can be increased 
thanks to the use of several technologies, the main drivers of the feasibility study are of economic 
nature. In particular, investment and operational costs still represent the main interests of decision 
makers, but the analysis point out how the emerging role of emissions in decision makers 
preferences is increasing as well. 

To perform SMAA simulations several information turned out to be necessary, including 
preference information from DMs, dependencies and uncertainties. In many cases, these kinds of 
information are not available [51]. However, the strength of the methodology proposed lies in the 
iterative nature of the process, that can be initially performed without preference or dependency 
information and later improved. 

8. Conclusion 

This study proposes a methodology to support decision making of carbon-neutral technologies 
for district heating. The proposed methodology aims at optimizing different alternatives in a first 
stage, then, using uncertainty and dependency information, coupled with preference information 
provided by DMs, at assessing the best alternatives. 

For the test case analyzed here, the methodology allowed to identify two preferred alternatives: 
solar heat plant with an increase of storage (A4) and base case with an increase of storage (A2) for 
cutting peak heat demand. On the contrary, electric boiler (A9) was ranked last, due to both its high 
operational cost and the marginal role obtained in the system after the overall rank order. 

The comparison between the best solution and the base case highlights the advantages 
provided by the introduction of solar heat and storage in the system. In particular, the initial 
expenditure can benefit from incentives and consequently, a reduction of operational cost of around 
8% was found. Looking at the environmental criteria a slight reduction of both 𝐶𝑂  and pollutants 
emission was computed, respectively of 3% and 2%, while from the technical point of view, solar 
plant and storage help to increase the flexibility of the system. 

As far as the methodology is concerned the Stochastic Multicriteria Acceptability Analysis 
(SMAA) has been chosen for its ability to consider absent or poor information. The applied 
methodology is suitable for every kind of energy related problem, properly simulated during the 
first stage, while alternatives and criteria are case-specific, therefore the results cannot be extended 
to similar cases. 

The methodology is capable to sort the best alternatives with a high confidence factor, but it 
requires a lot of effort in terms of data collection for the evaluation of the correlation matrix. 
Moreover, when the performance of the alternative technologies is affected by stochastic variables, 
as the external temperature or the irradiance, a more detailed analysis of the overall rank order is 
needed resulting in a significant increase of the computational cost. Lastly, it is worth noting that the 
optimization has been performed here based only on the operational costs. Should environmental 
aspects be included in the first-stage optimization, the complexity of the analysis increases 
significantly. 

This paper highlights the importance of considering in the problem formulation the 
dependencies between alternatives. The additional information gathered thanks to the correlation 
matrix justifies the effort required for the data collection. The subsequent increase of computational 
cost due to the iterative stage is offset by an increase of the confidence factor, which leads to an 
enhanced decision support analysis. 

Future works may consider the application of the methodology to the entire DH system.  
Moreover, the methodology could be subjected to improvement by implementing a “multi-objective 
optimization” in stage 1, exploring the Pareto front by considering the two most important criteria 
provided by DMs’ preferences. 
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Alt Alternative 
CHP Combined Heat and Power 
COP Coefficient of Performance 
DH District Heating 
DM Decision Makers 
EU European Union 
Flex Flexibility 
GSH Ground Source Heat pump 
HOB Heat Only Boiler 
Inv Investment cost 
MCDS Multicriteria Decision Support 
Op Operational cost 
O&M Operational and Maintenance 
PDF Probability Density Function 
SMAA Stochastic Multicriteria Acceptability Analysis 
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Appendix A 

Table A1. Correlation matrix for uncertainty dependencies of criteria measurements (%). 

 A1c A2c A3c A4c A5c A6c A7c A8c A9c A1e A2e A3e A4e A5e A6e A7e A8e A9e 
A1c 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A2c 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3c 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4c 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A5c 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 
A6c 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 
A7c 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 
A8c 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 
A9c 98 98 99 98 98 98 98 98 100 0 0 0 0 0 0 0 0 0 
A1e 59 59 53 59 60 59 59 58 40 100 0 0 0 0 0 0 0 0 
A2e −17 −17 −25 −17 −17 −17 −17 −19 −38 69 100 0 0 0 0 0 0 0 
A3e −39 −39 −46 −39 −39 −39 −39 −40 −58 51 97 100 0 0 0 0 0 0 
A4e −80 −80 −75 −80 −81 −80 −80 −80 −65 −96 −45 −24 100 0 0 0 0 0 
A5e −10 −10 −17 −9 −9 −10 −10 −11 −31 75 100 95 −52 100 0 0 0 0 
A6e −36 −36 −29 −36 −37 −36 −36 −35 −15 −97 −86 −72 85 −89 100 0 0 0 
A7e −99 −99 −98 −99 −99 −99 −99 −99 −94 −70 3 26 88 −5 49 100 0 0 
A8e 100 100 100 100 100 100 100 100 98 57 −20 −41 −79 −12 −34 −99 100 0 
A9e 0 0 8 0 0 0 0 1 22 −81 −98 −92 60 −100 93 14 2 100 
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