We propose a new approach for the recovery of binary signals in compressed sensing, based on the local minimization of a non-convex cost functional. The desired signal is proved to be a local minimum of the functional under mild conditions on the sensing matrix and on the number of measurements. We develop a procedure to achieve the desired local minimum, and, finally, we propose numerical experiments that show the improvement obtained by the proposed approach with respect to classical convex methods.
Non-convex approach to binary compressed sensing / Fosson, Sophie M.. - 2018-:(2019), pp. 1959-1963. (Intervento presentato al convegno 52nd Asilomar Conference on Signals, Systems and Computers, ACSSC 2018 tenutosi a Asilomar, CA, USA nel 2018) [10.1109/ACSSC.2018.8645293].
Non-convex approach to binary compressed sensing
Fosson, Sophie M.
2019
Abstract
We propose a new approach for the recovery of binary signals in compressed sensing, based on the local minimization of a non-convex cost functional. The desired signal is proved to be a local minimum of the functional under mild conditions on the sensing matrix and on the number of measurements. We develop a procedure to achieve the desired local minimum, and, finally, we propose numerical experiments that show the improvement obtained by the proposed approach with respect to classical convex methods.File | Dimensione | Formato | |
---|---|---|---|
asilomar2018.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
385.54 kB
Formato
Adobe PDF
|
385.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2729893
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo