We study circle homeomorphisms f ∈ C 2 (S 1 {x b }) whose rotation number ρ f is irrational, with a single break point x b at which f ′ has a jump discontinuity. We prove that the behavior of the ratios of the lengths of any two adjacent intervals of the dynamical partition depends on the size of break and on the continued fraction decomposition of ρ f . We also prove a result analogous to Yoccoz’s lemma on the asymptotic behaviour of the lengths of the intervals of trajectories of the renormalization transformation R n (f).
Some remarks on the geometry of circle maps with a break point / Simsek, Necip; Dzhalilov, Akhtam; Musso, Emilio. - In: FILOMAT. - ISSN 0354-5180. - ELETTRONICO. - 32:16(2018), pp. 5549-5563. [10.2298/FIL1816549S]
Some remarks on the geometry of circle maps with a break point
Musso, Emilio
2018
Abstract
We study circle homeomorphisms f ∈ C 2 (S 1 {x b }) whose rotation number ρ f is irrational, with a single break point x b at which f ′ has a jump discontinuity. We prove that the behavior of the ratios of the lengths of any two adjacent intervals of the dynamical partition depends on the size of break and on the continued fraction decomposition of ρ f . We also prove a result analogous to Yoccoz’s lemma on the asymptotic behaviour of the lengths of the intervals of trajectories of the renormalization transformation R n (f).File | Dimensione | Formato | |
---|---|---|---|
0354-51801816549S.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
293.34 kB
Formato
Adobe PDF
|
293.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2727574
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo