Virtualisation techniques are growing in popularity and importance, given their application to server consolidation and to cloud computing. Remote Attestation is a well-known technique to assess the software integrity of a node. It works well with physical platforms, but not so well with virtual machines hosted in a full virtualisation environment (such as the Xen Project hypervisor or Kernel-based Virtual Machine) and it is simply not available for a lightweight virtualisation environment (such as Docker). On the contrary, the latter is increasingly used, especially in lightweight cloud platforms, because of its flexibility and limited overhead as compared to virtual machines. This paper presents a solution for security monitoring of a lightweight cloud infrastructure, which exploits Remote Attestation to verify the software integrity of cloud applications during their whole life-cycle. Our solution leverages mainstream tools and architectures, like the Linux Integrity Measurement Architecture, the OpenAttestation platform and the Docker container engine, making it practical and readily available in a real-world scenario. Compared to a standard Docker deployment, our solution enables run-time verification of container applications at the cost of a limited overhead.
Integrity verification of Docker containers for a lightweight cloud environment / DE BENEDICTIS, Marco; Lioy, Antonio. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - STAMPA. - 97:(2019), pp. 236-246. [10.1016/j.future.2019.02.026]
Integrity verification of Docker containers for a lightweight cloud environment
Marco De Benedictis;Antonio Lioy
2019
Abstract
Virtualisation techniques are growing in popularity and importance, given their application to server consolidation and to cloud computing. Remote Attestation is a well-known technique to assess the software integrity of a node. It works well with physical platforms, but not so well with virtual machines hosted in a full virtualisation environment (such as the Xen Project hypervisor or Kernel-based Virtual Machine) and it is simply not available for a lightweight virtualisation environment (such as Docker). On the contrary, the latter is increasingly used, especially in lightweight cloud platforms, because of its flexibility and limited overhead as compared to virtual machines. This paper presents a solution for security monitoring of a lightweight cloud infrastructure, which exploits Remote Attestation to verify the software integrity of cloud applications during their whole life-cycle. Our solution leverages mainstream tools and architectures, like the Linux Integrity Measurement Architecture, the OpenAttestation platform and the Docker container engine, making it practical and readily available in a real-world scenario. Compared to a standard Docker deployment, our solution enables run-time verification of container applications at the cost of a limited overhead.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167739X18327201-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
880.98 kB
Formato
Adobe PDF
|
880.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2727552