In agriculture, remotely sensed data play a crucial role in providing valuable information on crop and soil status to perform effective management. Several spectral indices have proven to be valuable tools in describing crop spatial and temporal variability. In this paper, a detailed analysis and comparison of vineyard multispectral imagery, provided by decametric resolution satellite and low altitude Unmanned Aerial Vehicle (UAV) platforms, is presented. The effectiveness of Sentinel-2 imagery and of high-resolution UAV aerial images was evaluated by considering the well-known relation between the Normalised Difference Vegetation Index (NDVI) and crop vigour. After being pre-processed, the data from UAV was compared with the satellite imagery by computing three different NDVI indices to properly analyse the unbundled spectral contribution of the different elements in the vineyard environment considering: (i) the whole cropland surface; (ii) only the vine canopies; and (iii) only the inter-row terrain. The results show that the raw s resolution satellite imagery could not be directly used to reliably describe vineyard variability. Indeed, the contribution of inter-row surfaces to the remotely sensed dataset may affect the NDVI computation, leading to biased crop descriptors. On the contrary, vigour maps computed from the UAV imagery, considering only the pixels representing crop canopies, resulted to be more related to the in-field assessment compared to the satellite imagery. The proposed method may be extended to other crop typologies grown in rows or without intensive layout, where crop canopies do not extend to the whole surface or where the presence of weeds is significant.

Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment / Khaliq, Aleem; Comba, Lorenzo; Biglia, Alessandro; Ricauda Aimonino, Davide; Chiaberge, Marcello; Gay, Paolo. - In: REMOTE SENSING. - ISSN 2072-4292. - ELETTRONICO. - 11:4(2019), p. 436. [10.3390/rs11040436]

Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment

Khaliq, Aleem;Comba, Lorenzo;Chiaberge, Marcello;
2019

Abstract

In agriculture, remotely sensed data play a crucial role in providing valuable information on crop and soil status to perform effective management. Several spectral indices have proven to be valuable tools in describing crop spatial and temporal variability. In this paper, a detailed analysis and comparison of vineyard multispectral imagery, provided by decametric resolution satellite and low altitude Unmanned Aerial Vehicle (UAV) platforms, is presented. The effectiveness of Sentinel-2 imagery and of high-resolution UAV aerial images was evaluated by considering the well-known relation between the Normalised Difference Vegetation Index (NDVI) and crop vigour. After being pre-processed, the data from UAV was compared with the satellite imagery by computing three different NDVI indices to properly analyse the unbundled spectral contribution of the different elements in the vineyard environment considering: (i) the whole cropland surface; (ii) only the vine canopies; and (iii) only the inter-row terrain. The results show that the raw s resolution satellite imagery could not be directly used to reliably describe vineyard variability. Indeed, the contribution of inter-row surfaces to the remotely sensed dataset may affect the NDVI computation, leading to biased crop descriptors. On the contrary, vigour maps computed from the UAV imagery, considering only the pixels representing crop canopies, resulted to be more related to the in-field assessment compared to the satellite imagery. The proposed method may be extended to other crop typologies grown in rows or without intensive layout, where crop canopies do not extend to the whole surface or where the presence of weeds is significant.
2019
File in questo prodotto:
File Dimensione Formato  
article MDPI.pdf

accesso aperto

Descrizione: Research Article
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 5.69 MB
Formato Adobe PDF
5.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2725900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo