We investigate a machine-learning technique that predicts whether the bit-errorrate of unestablished lightpaths meets the required threshold based on traffic volume, desired route and modulation format. The system is trained and tested on synthetic data.
QoT estimation for unestablished lighpaths using machine learning / Barletta, L.; Giusti, A.; Rottondi, C.; Tornatore, M.. - ELETTRONICO. - (2017), pp. 1-3. ( 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 Los Angeles, CA (USA) 19-23 March 2017).
QoT estimation for unestablished lighpaths using machine learning
Barletta L.;Rottondi C.;
2017
Abstract
We investigate a machine-learning technique that predicts whether the bit-errorrate of unestablished lightpaths meets the required threshold based on traffic volume, desired route and modulation format. The system is trained and tested on synthetic data.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2722694
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
