This note collects some results on the behaviour of screw dislocation in an elastic medium. By using a semi-discrete model, we are able to investigate two specific aspects of the dynamics, namely (i) the interaction with free boundaries and collision events and (ii) the confinement inside the domain when a suitable Dirichlet-type boundary condition is imposed. In the first case, we analytically prove that free boundaries attract dislocations and we provide an expression for the Peach–Koehler force on a dislocation near the boundary. Moreover, we use this to prove an upper bound on the collision time of a dislocation with the boundary, provided certain geometric conditions are satisfied. An upper bound on the collision time for two dislocations with opposite Burgers vectors hitting each other is also obtained. In the second case, we turn to domains whose boundaries are subject to an external stress. In this situation, we prove that dislocations find it energetically favourable to stay confined inside the material instead of getting closer to the boundary. The result first proved for a single dislocation in the material is extended to a system of many dislocations, for which the analysis requires the careful treatments of the interaction terms.

Qualitative and quantitative properties of the dynamics of screw dislocations / Morandotti, Marco. - STAMPA. - 1:(2017), pp. 1062-1073. (Intervento presentato al convegno 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2017 tenutosi a Salerno nel 4-7/9/2017).

Qualitative and quantitative properties of the dynamics of screw dislocations

Morandotti, Marco
2017

Abstract

This note collects some results on the behaviour of screw dislocation in an elastic medium. By using a semi-discrete model, we are able to investigate two specific aspects of the dynamics, namely (i) the interaction with free boundaries and collision events and (ii) the confinement inside the domain when a suitable Dirichlet-type boundary condition is imposed. In the first case, we analytically prove that free boundaries attract dislocations and we provide an expression for the Peach–Koehler force on a dislocation near the boundary. Moreover, we use this to prove an upper bound on the collision time of a dislocation with the boundary, provided certain geometric conditions are satisfied. An upper bound on the collision time for two dislocations with opposite Burgers vectors hitting each other is also obtained. In the second case, we turn to domains whose boundaries are subject to an external stress. In this situation, we prove that dislocations find it energetically favourable to stay confined inside the material instead of getting closer to the boundary. The result first proved for a single dislocation in the material is extended to a system of many dislocations, for which the analysis requires the careful treatments of the interaction terms.
2017
9788894248470
File in questo prodotto:
File Dimensione Formato  
morandotti_aimeta2017_FP.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 201.07 kB
Formato Adobe PDF
201.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722672