For any prime number p, let Jp be the set of positive integers n such that p divides the numerator of the n-th harmonic number Hn. An old conjecture of Eswarathasan and Levine states that Jp is finite. We prove that for x ≥ 1 the number of integers in Jp ∩ [1, x] is less than 129p2/3x0.765. In particular, Jp has asymptotic density zero. Furthermore, we show that there exists a subset Sp of the positive integers, with logarithmic density greater than 0.273, and such that for any n ∈ Sp the p-adic valuation of Hn is equal to −logp n.

On the p-adic valuation of harmonic numbers / Sanna, Carlo. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 166:(2016), pp. 41-46. [10.1016/j.jnt.2016.02.020]

On the p-adic valuation of harmonic numbers

Sanna, Carlo
2016

Abstract

For any prime number p, let Jp be the set of positive integers n such that p divides the numerator of the n-th harmonic number Hn. An old conjecture of Eswarathasan and Levine states that Jp is finite. We prove that for x ≥ 1 the number of integers in Jp ∩ [1, x] is less than 129p2/3x0.765. In particular, Jp has asymptotic density zero. Furthermore, we show that there exists a subset Sp of the positive integers, with logarithmic density greater than 0.273, and such that for any n ∈ Sp the p-adic valuation of Hn is equal to −logp n.
File in questo prodotto:
File Dimensione Formato  
temp.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 251.13 kB
Formato Adobe PDF
251.13 kB Adobe PDF Visualizza/Apri
On the p-adic valuation of harmonic.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 237.37 kB
Formato Adobe PDF
237.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722661