For any prime number p, let Jp be the set of positive integers n such that p divides the numerator of the n-th harmonic number Hn. An old conjecture of Eswarathasan and Levine states that Jp is finite. We prove that for x ≥ 1 the number of integers in Jp ∩ [1, x] is less than 129p2/3x0.765. In particular, Jp has asymptotic density zero. Furthermore, we show that there exists a subset Sp of the positive integers, with logarithmic density greater than 0.273, and such that for any n ∈ Sp the p-adic valuation of Hn is equal to −logp n.
On the p-adic valuation of harmonic numbers / Sanna, Carlo. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 166:(2016), pp. 41-46. [10.1016/j.jnt.2016.02.020]
On the p-adic valuation of harmonic numbers
Sanna, Carlo
2016
Abstract
For any prime number p, let Jp be the set of positive integers n such that p divides the numerator of the n-th harmonic number Hn. An old conjecture of Eswarathasan and Levine states that Jp is finite. We prove that for x ≥ 1 the number of integers in Jp ∩ [1, x] is less than 129p2/3x0.765. In particular, Jp has asymptotic density zero. Furthermore, we show that there exists a subset Sp of the positive integers, with logarithmic density greater than 0.273, and such that for any n ∈ Sp the p-adic valuation of Hn is equal to −logp n.File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
251.13 kB
Formato
Adobe PDF
|
251.13 kB | Adobe PDF | Visualizza/Apri |
On the p-adic valuation of harmonic.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
237.37 kB
Formato
Adobe PDF
|
237.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2722661