Let A be the set of all positive integers n such that n divides the central binomial coefficient (2nn). Pomerance proved that the upper density of A is at most 1−log2. We improve this bound to 1−log2−0.05551. Moreover, let B be the set of all positive integers n such that n and (2nn) are relatively prime. We show that #(B∩[1,x])≪x/logx−−−−√ for all x>1.

Central binomial coefficients divisible by or coprime to their indices / Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 14:4(2018), pp. 1135-1141. [10.1142/S1793042118500707]

Central binomial coefficients divisible by or coprime to their indices

Sanna, Carlo
2018

Abstract

Let A be the set of all positive integers n such that n divides the central binomial coefficient (2nn). Pomerance proved that the upper density of A is at most 1−log2. We improve this bound to 1−log2−0.05551. Moreover, let B be the set of all positive integers n such that n and (2nn) are relatively prime. We show that #(B∩[1,x])≪x/logx−−−−√ for all x>1.
File in questo prodotto:
File Dimensione Formato  
Sanna_20170821.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 264.88 kB
Formato Adobe PDF
264.88 kB Adobe PDF Visualizza/Apri
Central binomial coefficients divisible by or coprime to their indices.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 155.17 kB
Formato Adobe PDF
155.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722660