Let b ≥ 2 be an integer and denote by sb(m) the sum of the digits of the positive integer m when is written in base b. We prove that sb(n!) > Cb log n log log log n for each integer n>ee, where Cb is a positive constant depending only on b. This improves by a factor log log log n a previous lower bound for sb(n!) given by Luca. We prove also the same inequality but with n! replaced by the least common multiple of 1, 2, ..., n.

On the sum of digits of the factorial / Sanna, Carlo. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - STAMPA. - 147:(2015), pp. 836-841. [10.1016/j.jnt.2014.09.003]

On the sum of digits of the factorial

Sanna, Carlo
2015

Abstract

Let b ≥ 2 be an integer and denote by sb(m) the sum of the digits of the positive integer m when is written in base b. We prove that sb(n!) > Cb log n log log log n for each integer n>ee, where Cb is a positive constant depending only on b. This improves by a factor log log log n a previous lower bound for sb(n!) given by Luca. We prove also the same inequality but with n! replaced by the least common multiple of 1, 2, ..., n.
File in questo prodotto:
File Dimensione Formato  
sumdigfact.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 246.96 kB
Formato Adobe PDF
246.96 kB Adobe PDF Visualizza/Apri
On the sum of digits of the factorial.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 228.76 kB
Formato Adobe PDF
228.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722659