For any real number s, let σs be the generalized divisor function, i.e., the arithmetic function defined by σs(n) := d | n ds , for all positive integers n. We prove that for any r > 1 the topological closure of σ−r(N+) is the union of a finite number of pairwise disjoint closed intervals I1,...,I. Moreover, for k = 1,...,, we show that the set of positive integers n such that σ−r(n) ∈ Ik has a positive rational asymptotic density dk. In fact, we provide a method to give exact closed form expressions for I1,...,I and d1,...,d, assuming to know r with sufficient precision. As an example, we show that for r = 2 it results = 3, I1 = [1, π2/9], I2 = [10/9, π2/8], I3 = [5/4, π2/6], d1 = 1/3, d2 = 1/6, and d3 = 1/2.

On the closure of the image of the generalized divisor function / Sanna, Carlo. - In: UNIFORM DISTRIBUTION THEORY. - ISSN 1336-913X. - STAMPA. - 12:2(2017), pp. 77-90.

On the closure of the image of the generalized divisor function

Sanna, Carlo
2017

Abstract

For any real number s, let σs be the generalized divisor function, i.e., the arithmetic function defined by σs(n) := d | n ds , for all positive integers n. We prove that for any r > 1 the topological closure of σ−r(N+) is the union of a finite number of pairwise disjoint closed intervals I1,...,I. Moreover, for k = 1,...,, we show that the set of positive integers n such that σ−r(n) ∈ Ik has a positive rational asymptotic density dk. In fact, we provide a method to give exact closed form expressions for I1,...,I and d1,...,d, assuming to know r with sufficient precision. As an example, we show that for r = 2 it results = 3, I1 = [1, π2/9], I2 = [10/9, π2/8], I3 = [5/4, π2/6], d1 = 1/3, d2 = 1/6, and d3 = 1/2.
2017
File in questo prodotto:
File Dimensione Formato  
closure.pdf

accesso riservato

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 409.18 kB
Formato Adobe PDF
409.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
On the closure of the image of the generalized divisor function.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722658