For each positive integer N, let SN be the set of all polynomials P(x)∈Z[x] with degree less than N and minimal positive integral over [0,1]. These polynomials are related to the distribution of prime numbers since ∫10P(x)dx=exp(−ψ(N)), where ψ is the second Chebyshev function. We prove that for any positive integer N there exists P(x)∈SN such that (x(1−x))⌊N/3⌋ divides P(x) in Z[x]. In fact, we show that the exponent ⌊N/3⌋ cannot be improved. This result is analog to a previous of Aparicio concerning polynomials in Z[x] with minimal positive L∞ norm on [0,1]. Also, it is in some way a strengthening of a result of Bazzanella, who considered x⌊N/2⌋ and (1−x)⌊N/2⌋ instead of (x(1−x))⌊N/3⌋.

A factor of integer polynomials with minimal integrals / Sanna, Carlo. - In: JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX. - ISSN 1246-7405. - STAMPA. - 29:2(2017), pp. 637-646.

A factor of integer polynomials with minimal integrals

Sanna, Carlo
2017

Abstract

For each positive integer N, let SN be the set of all polynomials P(x)∈Z[x] with degree less than N and minimal positive integral over [0,1]. These polynomials are related to the distribution of prime numbers since ∫10P(x)dx=exp(−ψ(N)), where ψ is the second Chebyshev function. We prove that for any positive integer N there exists P(x)∈SN such that (x(1−x))⌊N/3⌋ divides P(x) in Z[x]. In fact, we show that the exponent ⌊N/3⌋ cannot be improved. This result is analog to a previous of Aparicio concerning polynomials in Z[x] with minimal positive L∞ norm on [0,1]. Also, it is in some way a strengthening of a result of Bazzanella, who considered x⌊N/2⌋ and (1−x)⌊N/2⌋ instead of (x(1−x))⌊N/3⌋.
File in questo prodotto:
File Dimensione Formato  
Sanna_JTNB.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 279.9 kB
Formato Adobe PDF
279.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
JTNB_2017__29_2_637_0.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 638.64 kB
Formato Adobe PDF
638.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722656