For each positive integers n, let g(n) be the number of arithmetic expressions evaluating to n and involving only the constant 1, additions and multiplications, with the restriction that multiplication by 1 is not allowed. We consider two arithmetic expressions to be equal if one can be obtained from the other through a repeated application of the commutative and associative properties. We give an algorithm to compute g(n) and prove that log(g(n)) = βn + O(√n), as n → +∞, where β := log(24)/24.

On the number of arithmetic formulas / Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 11:4(2015), pp. 1099-1106. [10.1142/S1793042115500591]

On the number of arithmetic formulas

Sanna, Carlo
2015

Abstract

For each positive integers n, let g(n) be the number of arithmetic expressions evaluating to n and involving only the constant 1, additions and multiplications, with the restriction that multiplication by 1 is not allowed. We consider two arithmetic expressions to be equal if one can be obtained from the other through a repeated application of the commutative and associative properties. We give an algorithm to compute g(n) and prove that log(g(n)) = βn + O(√n), as n → +∞, where β := log(24)/24.
File in questo prodotto:
File Dimensione Formato  
temp.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 248.23 kB
Formato Adobe PDF
248.23 kB Adobe PDF Visualizza/Apri
On the number of arithmetic formulas.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 149.67 kB
Formato Adobe PDF
149.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722654