For each positive integers n, let g(n) be the number of arithmetic expressions evaluating to n and involving only the constant 1, additions and multiplications, with the restriction that multiplication by 1 is not allowed. We consider two arithmetic expressions to be equal if one can be obtained from the other through a repeated application of the commutative and associative properties. We give an algorithm to compute g(n) and prove that log(g(n)) = βn + O(√n), as n → +∞, where β := log(24)/24.
On the number of arithmetic formulas / Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 11:4(2015), pp. 1099-1106.
Titolo: | On the number of arithmetic formulas |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S1793042115500591 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
temp.pdf | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
On the number of arithmetic formulas.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2722654