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ON THE NUMBER OF ARITHMETIC FORMULAS

(DRAFT August 21, 2014)

CARLO SANNA

Abstract. For each positive integers n, let g(n) be the number of arithmetic expressions
evaluating to n and involving only the constant 1, additions and multiplications, with the
restriction that multiplication by 1 is not allowed. We consider two arithmetic expressions
to be equal if one can be obtained from the other through a repeated application of the
commutative and associative properties. We give an algorithm to compute g(n) and prove
that log(g(n)) = βn+O(

√
n), as n→ +∞, where β := log(24)/24.

1. Introduction

Given a positive integer n, a quite natural question is to study the arithmetic expressions only
using the constant 1 and the binary operators of addition and multiplication, which return n as
result. Since 1 is the multiplicative identity, we restrict ourselves to consider only expressions
where 1 is never an argument of multiplication. We call these expressions arithmetic formulas
for n. For example, 4 has 6 arithmetic formulas, namely

1 + (1 + (1 + 1)), 1 + ((1 + 1) + 1), (1 + (1 + 1)) + 1,

((1 + 1) + 1) + 1, (1 + 1) + (1 + 1), (1 + 1)× (1 + 1).

Let f(n) be the number of arithmetic formulas for n. Gnang, Radziwi l l and the author
[GRS14] proved the following asymptotic formula for f(n), previously conjectured by Gnang
and Zeilberger [GZ13].

Theorem 1.1. There exists constants C > 0 and ρ > 4 such that

f(n) ∼ C · ρ
n

n3/2
,

as n→∞.

Clearly, given an arithmetic formula for n, if we apply to it, or to one of its subformulas,
the commutative or associative identities:

A+B = B +A, A×B = B ×A,
(A+B) + C = A+ (B + C), (A×B)× C = A× (B × C);

then we get another arithmetic formula for n. We call such a pair of arithmetic formulas
equivalent, since obviously this is an equivalence relation. To continue the example, 4 has only
2 inequivalent arithmetic formulas, namely

1 + 1 + 1 + 1, (1 + 1)× (1 + 1).

Let g(n) be the number of inequivalent arithmetic formulas for n. It is quite reasonable to
expect that g(n) is much smaller than f(n) as n→ +∞. In fact, we prove the following

Theorem 1.2. It results

log g(n) =
log 24

24
· n+O

(√
n
)
,

as n→ +∞.
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2. Preliminaries

In this section, we collect some lemmas needed in the proof of Theorem 1.2. For each positive
integer n, let p(n) be the partition function of n, i.e., the number of ways of writing n as a sum
of positive integers, where the order of the summands does not matter. Hardy and Ramanujan
[HR18], and independently Uspensky [Usp20], proved the asymptotic formula

p(n) ∼ ec0
√
n

4
√

3n
,

as n → +∞, where c0 := π
√

2/3. This result was improved by Rademacher [Rad37, Rad43]
who gave a convergent series expression for p(n). We only need the following upper bound.

Lemma 2.1. For each positive integer n, we have p(n) < ec0
√
n.

Proof. See [Apo76][Theorem 14.5]. �

The multiplicative analogue of the (additive) partition function p(n) is the multiplicative
partition function q(n), i.e., the number of ways of writing n as a product of integers larger
than 1, where the order of the factors is not taken into account. The maximal order of q(n)
was studied by Canfield, Erdős and Pomerance [CEP83] (correcting [Opp26]) and at that time
an effective upper bound for q(n) was given by Hughes and Shallit [HS83]. We make use of
the following

Lemma 2.2. For each positive integer n, we have q(n) ≤ n.

Proof. See [DM86]. �

The last two lemmas of this section are more technical. The first is a recursive formula for a
sum over the additive partitions of n. The second concerns two inequalities for multiplicative
partitions of n.

Lemma 2.3. Let f be a function from the positive integers to the complex numbers and define

F (n) :=
∑

n=a1+···+ak
a1≤···≤ak

f(a1) · · · f(ak),

for all positive integers n, put also F (0) := 1. Then

F (n) =
1

n

n∑
m=1

F (n−m)h(m),

for all positive integers n, where

h(m) :=
∑
d |m

(f(d))m/d d.

Proof. This result is a generalization of the classical identity for the partition function

(1) p(n) :=
1

n

n∑
m=1

p(n−m)σ(m),

where σ(m) :=
∑

d |n d is the sum of divisors of m. A detailed proof of (1) that can be easily

adapted to this generalization can be found in [CHO07, Theorem 3]. �

Lemma 2.4. Let a1, . . . , ak ≥ 2 be integers, with k ≥ 2, and set n := a1 · · · ak. Then

(2) a1 + · · ·+ ak ≤ 2 +
n

2
.

Moreover, if n ≥ 129 then

(3)
√
a1 + · · ·+

√
ak ≤

√
2 +

√
n

2
.
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Proof. We proceed by induction on k. If k = 2 consider that for each t > 0 the map x 7→
xt + (n/x)t is convex on [2, n/2], so taking t = 1 and t = 1/2 we get

a1 + a2 ≤ 2 +
n

2
and

√
a1 +

√
a2 ≤

√
2 +

√
n

2
,

respectively. Suppose k ≥ 3 and that the claim holds for all integers in [2, k − 1]. Since
a1, . . . , ak ≥ 2, we have

a1 + · · ·+ ak ≤ a1 · · · ak−1 + ak ≤ 2 +
n

2
,

by inductive hypothesis, so (2) is proved. The inequality (3) needs a bit more work. If k ≥ 8
then

√
a1 + · · ·+√ak√

n
=

k∑
i=1

1√
a1 · · · 6ai · · · ak

≤ k√
2k−1

≤ 1√
2
,

and the claim follows. Thus we can assume k ≤ 7 and, without loss of generality, a1 ≤ · · · ≤ ak.
If ak−1 ≥ 4 or ak ≥ 12 then

√
a1 + · · ·+√ak−1 +

√
ak ≤

√
a1 + · · ·+√ak−2 +

√
ak−1ak ≤

√
2 +

√
n

2
,

by inductive hypothesis. Hence suppose ak−1 ≤ 3 and ak ≤ 11, so that 129 ≤ n ≤ 3k−1 · 11
and then k ≥ 4. Now if ak−2 ≥ 3 then

√
a1 + · · ·+√ak−2 +

√
ak−1 +

√
ak ≤

√
a1 + · · ·+√ak−3 +

√
ak−2ak−1ak ≤

√
2 +

√
n

2
,

by inductive hypothesis. So we can assume 4 ≤ k ≤ 7, ai = 2 for i ≤ k − 2, ak−1 ≤ 3 and
ak ≤ 11. At this point, it is easy to check that (3) holds for all possibile values of a1, . . . , ak
satisfying n ≥ 129. �

Note that for any even integer n ≥ 4, taking k = 2, a1 = 2 and a2 = n/2 we have the
equality in both (2) and (3). Furthermore, if n = 128, k = 7 and a1 = · · · = a7 = 2 then (3)
does not hold.

3. Inequivalent arithmetic formulas

In [GRS14] arithmetic formulas are defined as special plane binary trees. To study inequiv-
alent arithmetic formulas is better instead to define them as trees, in the following way

Definition 3.1. Let n be a positive integer. An inequivalent arithmetic formula for n is an
N-valued {+,×}-labelled rooted tree such that

(i). The value of the root is n.
(ii). The value of each leaf is 1.
(iii). Each non-leaf node has at least two children.
(iv). Each non-leaf node is labelled with + (additive node) or × (multiplicative node).
(v). Each child of an additive node is a leaf or a multiplicative node.
(vi). Each child of a multiplicative node is an additive node.
(vii). The value of each additive node is the sum of the values of its children.

(viii). The value of each multiplicative node is the product of the values of its children.

Now it is not difficult to check that this definition is consistent with the one given in the
Introduction. Precisely, there is a bijection beetween the set of inequivalent arithmetic formulas
and the set of equivalence classes of arithmetic formulas, so g(n) is actually the number of
inequivalent arithmetic formulas, with respect to Definition 3.1.

To study g(n) we need to introduce two auxiliary functions: For each integer n ≥ 2 let g+(n),
respectively g×(n), be the number of arithmetic formulas for n which root node is additive,
respectively multiplicative; set also g+(1) := 0 and g×(1) := 1. Thus it is straightforward that
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g(n) = g+(n) + g×(n) for all positive integers n. Furthermore, we have the following recursive
formulas for computing g+(n) and g×(n).

Lemma 3.1. For all integers n ≥ 2,

g+(n) =
∑

n=a1+···+ak
a1≤···≤ak<n

g×(a1) · · · g×(ak)

and
g×(n) =

∑
n=a1···ak

2≤a1≤···≤ak≤n/2

g+(a1) · · · g+(ak).

For “small” n, we can actually use the formulas of Lemma 3.1 to find g(n). But since the
formula for g+(n) involve a sum over all the p(n) partitions of n, this is not a practical method
for “large” n. Our proof of Theorem 1.2 requires the computation of g(n) for all n ≤ 1052, so
we need a better algorithm.

Lemma 3.2. For all positive integers n, we have

g(n) =
1

n

n∑
m=1

g(n−m)h(m),

where g(0) := 1 and

h(m) :=
∑
d |m

(g×(d))m/d d.

Proof. The claim follows directly from Lemma 3.1 and Lemma 2.3 with f = g×. �

Putting together Lemma 3.1 and Lemma 3.2, we get the following pseudocode of an algo-
rithm to compute g(n), g+(n) and g×(n) for n ≤ N .

g(0) = 1, g(1) = 1, g+(1) = 0, g×(1) = 1, h(1) = 1

for n = 2, . . . , N do

g×(n) =
∑

n=a1···ak, 2≤a1≤···≤ak g
+(a1) · · · g+(an)

h(n) =
∑

d |n(g×(d))n/dd

g(n) = (1/n)
∑n

m=1 g(n−m)h(m)

g+(n) = g(n)− g×(n)

end for

If implemented on a personal computer, it permits to find g(n) for n of the order of 103 in
few seconds.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 consists of two lemmas. From now on, let β := log 24
24 .

Lemma 4.1. For all positive integers n, we have

(i). g×(n) ≤ exp(βn), with equality for n = 24; and
(ii). g(n) < exp(βn+ c0

√
n).

Proof. We prove (i) by strong induction on n. With the aid of a computer, using the algorithm
of the previous section, one can check that g×(n) ≤ exp(βn) holds for each positive integer
n ≤ 1052. Therefore, let m ≥ 1053 be an integer and suppose that g×(n) ≤ exp(βn) for all
positive integers n < m. By inductive hypothesis, from Lemma 3.1 and Lemma 2.1 it follows
that

g(n) =
∑

n=a1+···+ak
a1≤···≤ak

g×(a1) · · · g×(ak) ≤
∑

n=a1+···+ak
a1≤···≤ak

eβ(a1+···+ak)(4)

= p(n) eβn < eβn+c0
√
n,
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for all positive integers n < m. As a consequence, using Lemmas 3.1, 2.4 and 2.2 we obtain

g×(n) =
∑

n=a1···ak
2≤a1≤···≤ak≤n/2

g+(a1) · · · g+(ak) ≤
∑

n=a1···ak
2≤a1≤···≤ak≤n/2

g(a1) · · · g(ak)

<
∑

n=a1···ak
2≤a1≤···≤ak≤n/2

eβ(a1+···+ak)+c0(
√
a1+···+

√
ak)

≤ q(n) exp(12βn+ 2β + c0
√

2 + c0
√
n/2)

≤ exp(12βn+ 2β + c0
√

2 + c0
√
n/2 + log n),

for all integers n ∈ [129, 2m[. In particular, for n = m we have

g×(m) ≤ exp(12βm+ 2β + c0
√

2 + c0
√
m/2 + logm) ≤ exp(βm),

where the last inequality follows since m ≥ 1053, hence (i) is proved. Now (ii) follows from (4)
and the proof is complete. �

Lemma 4.2. We have g+(n) ≥ exp(βn) for all integers n ≥ 7.

Proof. The claim is true for n ∈ [7, 30], so assume n ≥ 31. We can write n = 24q+ r, for some
integers q ≥ 1 and r ∈ [7, 30]. From Lemma 4.1 we know that g×(24) = e24β, hence using
Lemma 3.1 we get

g+(n) =
∑

n=a1+···+ak
a1≤···≤ak<n

g×(a1) · · · g×(ak) ≥ (g×(24))q
∑

r=b1+···+bh
b1≤···≤bh<r

g×(b1) · · · g×(bh)

= (g×(24))q · g×(r) ≥ exp(β(24q + r)) = exp(βn),

which is our claim. �

At this point, Theorem 1.2 is an easy consequence of Lemma 4.2 and point (ii) of Lemma 4.1,
since together they imply

exp(βn) ≤ g+(n) ≤ g(n) < exp(βn+ c0
√
n),

for all integers n ≥ 7. Therefore, log g(n) = βn+O(
√
n), as n→ +∞.
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